CHAPTER 2 STATISTICAL FUNDAMENTALS FOR FORECASTING - PowerPoint PPT Presentation

1 / 81
About This Presentation
Title:

CHAPTER 2 STATISTICAL FUNDAMENTALS FOR FORECASTING

Description:

Theoretical structure (e.g., Construction of a Die) Probability Distributions in ... Actuals = Forecast Mean Error /- ZS. The m /-s contains 68% of the ND ... – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 82
Provided by: mong2
Category:

less

Transcript and Presenter's Notes

Title: CHAPTER 2 STATISTICAL FUNDAMENTALS FOR FORECASTING


1
CHAPTER 2STATISTICAL FUNDAMENTALS FOR FORECASTING
  • THE IMPORTANCE OF PATTERN
  • Descriptive and Graphical Tools
  • Probability Distributions
  • UNIVARIATE SUMMARY STATISTICS
  • Using Mean, Median, or Mode
  • Properties of Central Values
  • Mean Forecast Error

2
  • MEASURING ERRORS - STANDARD DEVIATION/MAD
  • NORMAL DISTRIBUTION
  • Characteristics of the Normal Distribution (ND)
  • Describing All Normal Distributions
  • Prediction Intervals
  • MAD - Measure of Scatter
  • An Example Using Sales of Product A
  • Frequency Distribution Solution

3
  • FITTING VERSUS FORECASTING
  • Absolute Error Measures
  • Relative Measures of Error
  • Cautions in Using Percentages
  • Other Error Measures
  • STATISTICAL SIGNIFICANCE TEST FOR BIAS
  • CORRELATION AND COVARIANCES
  • Correlation - Big City Bookstore
  • Statistical Significance
  • Cause and Effect

4
  • AUTOCORRELATIONS AND ACF(k)
  • ACFs of Random Series, Random Walk Series,
    Trending Series, Seasonal Series
  • Which Measure of Correlation?
  • ACFs of Births and Marriages
  • SUPPLEMENT 2-A E(VALUES), WN, AND CORR.
  • SUPPLEMENT 2-B Q-STATISTIC

5
Chapter 2
  • THE IMPORTANCE OF PATTERN
  • Actual Value Pattern Error
  • DESCRIPTIVE STATISTICS
  • Statistical analysis models the past to predict
    the future
  • FIGURE 2-1.
  • Demand for Product A (Boxes of Computer Paper) A
    series with Random Sales
  • The past may be a representative sample of past
    and future values.

6
  • Descriptive and Graphical Tools
  • Raw data ? Information (i.e. Pattern) ?
    Forecasts ? Decisions
  • Series A Distribution
  • Demands from 675 to 1,024 100.00
  • Demands from 825 and 874 29.20
  • Demands above 974 2.08
  • Demands above 1,024 0.00
  • Demand from 775 to 924 79.20

7
  • TABLE 2-1. Frequency/Probability Distribution of
    Demands for Product A Probabilities
  • Past percentage frequencies
  • P(Rain) 600/1,000 .6 60
  • Subjective judgment
  • Theoretical structure (e.g., Construction of a
    Die)

8
Probability Distributions in Forecasting
  • Assumption 1 The past repeats.
  • Assumption 2 The sample is accurate.
  • FIGURE 2-2.
  • Probability Distribution of Demands for Product A

9
UNIVARIATE SUMMARY STATISTICS
  • Predicting Using Mean, Median, or Mode
  • Time t 1 2 3 4 5 6 7
  • Values Xt 11 4 5 12 9 2 6
  • Mean
  • SXt 114512926 49
  • t 7 (2-1)
  • n 7 7
  • where SXt is the sum from t 1 to t 7

10
  • Deviations are
  • Xt - xt xt
  • (11 - 7) 4
  • ( 4 - 7) -3
  • ( 5 - 7) -2
  • (12 - 7) 5
  • ( 9 - 7) 2
  • ( 2 - 7) -5
  • ( 6 - 7) -1
  •  
  • Sxt 4 - 3 - 2 5 2 - 5 - 1 0

11
  • Median is the middle value
  • 2 4 5 6 9 11 12
  • Mode is most frequent
  • 1 2 5 6 6 7 10 11
  • Comparisons of Measures
  • Symmetrical Distributions
  • Mean, Median, and Mode are all equal
  • Properties of Central Values
  • Mean - greatly affected by extremes.
  • Outliers greatly affect it.
  • Median less affected by extremes.
  • Mode not affected by extremes.

12
  • Forecast period 9.
  •  
  • t 1 2 3 4 5 6
    7 8
  • Xt 100 70 90 110 1,200 110 130 80
  •  
  • Ranking, the sales are
  • 70 80 90 100 110 110 130 1,200
  •  

13
Which is best to forecast Period 9?
  • 10070901101,20011013080
  • Mean
  • 8
  • 236.25
  • Median (100 110)/2 105
  • Mode 110
  •  
  • 1,200 Greatly Influences the Mean. If 1,200 is a
    typical value, then use the mean of 236.25.

14
  • If 1,200 is abnormal, then Median. Better Yet,
    Correct the 1,200 Value.  
  • 100709011013011013080
  • Mean
  • 8
  • 102.5
  • Median (100 110)/2 105
  • Mode 110
  • Outliers should normally be replaced. But Retain
    the Value of the Outlier for Planning Purposes.  

15
Outlier Adjustments Are Essential
  • Normality is achieved through elimination of the
    abnormal.

16
Mean Forecast Error
  • Good Models ME 0, MSE 0
  • Over and under forecasting the same.
  • Nonzero mean errors yield large cumulative
    errors.

17
Dispersion - Standard Dev. and MAD
  • FIGURE 2-3
  • Four Distributions with the Same Mean but
    Different Scatter
  • Standard deviation Mean Squared Error
  • S standard deviation from sample
  • s standard deviation from census

18
  • s is estimated using the Xbart and S of large
    samples (i.e., sample sizes greater than 30)
    provide accurate estimates of s.
  • S(Xt m)2
  • s (2-3)
  • N
  • where m population mean
  • N population size.
  • S sum over all obs (i.e., a census)

19
  • The best estimate of s is S
  • S(Xt x)2
  • S (2-4)
  • n - 1
  • where x sample mean
  • n-1 better estimates s.

20
  • An Example
  • t 1 2 3 4 5 6 7
  • Xt 11 4 5 12 9 2 6
  • x 7
  • (11-7)2(4-7)2(5-7)2(12-7)2(9-7)2(2-7)2(6
    -7)2
  • S2 7 - 1
  • S 3.742, used to estimate s.
  • The meaning of S is clearer with ND

21
NORMAL DISTRIBUTION
  • FIGURE 2-4. Normal Distribution Area
  • Characteristics of the Normal Distribution (ND)
  • Is symmetrical, bell-shaped.
  • Describes Events with relatively large number of
    minor, independent,chance (random) influences.
  • The errors or deviations of large samples are ND
    large gt 30.
  • Is defined totally by m and s.

22
  • TABLE 2-2.
  • Some Standard Confidence Intervals for the
    Normal Distribution
  • Describing All Normal Distributions
  • The m /-s contains 68 of the ND
  • The m /- 1.96s contains 95 of the ND.
  • The m /- 2.58s contains 99 of the ND.

23
  • Forecast error Actual - Forecast
  • Actual Forecast Error
  • e.g., forecast 1000 and S of 40
  • Actuals Forecast Mean Error /- ZS
  • The m /-s contains 68 of the ND
  • Actuals 1,000 /- 40 960 to 1,040.
  • The m /- 1.96s contains 95 of the ND.
  • Actual 1,000 /- 80 920 to 1,080.
  • The m /- 2.58s contains 99 of the ND.
  • Other common intervals are in Table 2-2.

24
Prediction Intervals
  • Based on assumption the past will repeat.
  • P(ActualgtForecast3S a good process) .0027/2
    .00135
  • P(ActualltForecast-3S a good process) .0027/2
    .00135
  • where P is the probability
  • means given

25
  • If Actual - Forecast gt 3S
  • Then infer the process is out of control.
  • Only 27/10,000 times will this occur when in
    control.

26
MAD Another Measure of Scatter
  • S Xt x
  • MAD (2-5)
  • n
  • Using data from the S calculation,
  • 11 4 5 12 9 2 6 with x 7
  • 11-74-75-712-79-72-7
    6-7
  • MAD
  • 7
  • 3.143

27
  • For the ND
  • MAD .80S or S 1.25MAD (2-6)
  • In terms of S the following results
  • Mean /- 3.00S Mean and - 3.00(40)
  • Mean and - 120
  • In terms of MAD
  • Mean /- 3.75MAD Mean and -3.75(32)
  • Mean and - 120

28
An Example Using Sales of Product A
  • The series varies randomly about a constant mean
    of 850 without any systematic pattern, an
    effective forecast is the mean of 850.
  • Forecast 850
  • Error Actual - Forecast Actual - 850
  • Table 2-3 Frequency Distribution of Forecast
    Errors for Product A

29
FIT VERSUS FORECAST ? FIT THEN FORECAST
  • Fit - use past to fit model
  • Forecast - Forecast unknown future values
  • WWFATAL.DAT from 1970 to 1989
  • Fit 1970 to 1979 then
  • Forecast 1980 to 1989. Assume Deaths are Random
    About Mean
  • YtYt et 830.2 et
  • Where Yt mean of 1970 to 1979 830.2

30
  • Table 2-4 Worldwide Airline Deaths - Actual and
    Fitted Values
  • DATE DEATHS FITTED ERROR ERROR
    ERROR2
  • 1970 700 830.2 -130.2
    130.2 16952.04
  • 1971 884 830.2 53.8
    53.8 2894.44
  • 1972 1209 830.2 378.8
    378.8 143489.44
  • 1973 862 830.2 31.8
    31.8 1011.24
  • 1974 1299 830.2 468.8
    468.8 219773.44
  • 1975 467 830.2 -363.2
    363.2 131914.24
  • 1976 734 830.2 -96.2
    96.2 9254.44
  • 1977 516 830.2 -314.2
    314.2 98721.64
  • 1978 754 830.2 -76.2
    76.2 5806.44
  • 1979 877 830.2 46.8
    46.8 2190.24
  • TOTAL 8302 8302 0.0
    1960 632007
  • MEAN 830.2 830.2 0.0
    196.0 63200.7

31
  • Absolute Error Measures, et Yt - Yt
  • n
  • ME Set/n 0/10 0 (2-7)
  • t1
  • n
  • MAD Set/n 1960/10 196 (2-8)
  • t1
  • n
  • SSE Se2t 632,007 (2-9)
  • t1
  • n
  • MSE Se2t/n 63,200.7 (2-10)
  • t1

32
  • RESIDUAL STANDARD ERROR
  • RSE Se2t/(n-1)
  • 632,007/(10-1) 265 (2-11)

33
  • Table 2-5 Worldwide Airline Deaths - Actual and
    Forecasted Values
  • DATE DEATHS FORECAST ERROR ERROR
    ERROR2
  • 1980 817 830.2
    -13.2 13.2 174.24
  • 1981 362 830.2
    -468.2 468.2 219211.24
  • 1982 764 830.2
    -66.2 66.2 4382.44
  • 1983 809 830.2
    -21.2 21.2 449.44
  • 1984 223 830.2
    -607.2 607.2 368691.84
  • 1985 1066 830.2
    235.8 235.8 55601.64
  • 1986 546 830.2
    -284.2 284.2 80769.64
  • 1987 901 830.2
    70.8 70.8 5012.64
  • 1988 729 830.2
    -101.2 101.2 10241.44
  • 1989 825 830.2
    -5.2 5.2 27.04

34
  • The forecast error measures are
  • n
  • ME Set/n -1260/10 -126 (2-7a)
  • t1
  • n
  • MAD Set/n1873.2/10187.32 (2-8a)
  • t1
  • n
  • SSE Se2t 744,561.6 (2-9a)
  • t1
  • n
  • MSE Se2t/n 74,456.16 (2-10b)
  • t1

35
  • RSE Se2t/(n-1)
  • 744561.6/9 287.6 (2-11b)

36
Relative Measures of Error
  • S (Yt - Yt)
  • PEt (100) (2-12)
  • Yt
  • n
  • MPE SPEt/n (2-13)
  • t1
  • n
  • MAPE SPet/n (2-14)
  • t1

37
  • TABLE 2-6 RELATIVE MEASURES OF FIT AND FORECAST
    ERRORS
  • DATE DEATHS FIT ERROR PE
    APE
  • 1970 700 830.2 -130.2
    -18.60 18.60
  • 1971 884 830.2
    53.8 6.09 6.09
  • 1972 1209 830.2 378.8
    31.33 31.33
  • 1973 862 830.2
    31.8 3.69 3.69
  • 1974 1299 830.2 468.8
    36.09 36.09
  • 1975 467 830.2 -363.2
    -77.77 77.77
  • 1976 734 830.2
    -96.2 -13.11 13.11
  • 1977 516 830.2 -314.2
    -60.89 60.89
  • 1978 754 830.2
    -76.2 -10.11 10.11
  • 1979 877 830.2
    46.8 5.34 5.34
  • MEAN 830.2 830.2 0.0
    -9.80 26.30

38
  • DATE DEATHS FORECAST ERROR PE
    APE
  • 1980 817 830.2
    -13.2 - 1.62 1.62
  • 1981 362 830.2
    -468.2 -129.34 29.34
  • 1982 764 830.2
    -66.2 -8.66 8.66
  • 1983 809 830.2
    -21.2 -2.63 2.62
  • 1984 223 830.2
    -607.2 -272.29 272.29
  • 1985 1066 830.2
    235.8 22.12 22.12
  • 1986 546 830.2
    -284.2 -52.05 52.05
  • 1987 901 830.2
    70.8 7.86 7.86
  • 1988 729 830.2
    -101.2 -13.88 13.88
  • 1989 825 830.2
    -5.2 -.63 .63
  • MEAN 704.2 830.2
    -126.0 -45.11 51.11

39
  • Cautions in Using Percentages
  • PE ? Infinity with small denominators in eq.
    2-12, when the actual is very low.
  • OCCAM'S RAZOR and PARSIMONY
  • All other things equal, the simplest theory or
    model is the best.

40
Statistical Significance Test for Bias or
Non-zero Mean Error
  • et - 0
  • t-calc.
  • Se/ n
  • ( et - et)2
  • Se this is the Std Dev.
  • n-1
  • If t-calc lt t-table, not statistically
    significant Bias
  • If t-calc gt t-table, statistically significant
    Bias

41
  • CORRELATION MEASURES
  • Table 2-7. Big City Bookstore Demand,
    Advertising, and Competition. (BIGCITY.DAT)
  • Year Demand (Y) Advertising (X1)
    Competition (X2)
  • 1984 27 20
    10
  • 1985 23 20
    15
  • 1986 31 25
    15
  • 1987 45 28
    15
  • 1988 47 29
    20
  • 1989 42 28
    25
  • 1990 39 31
    35
  • 1991 45 34
    35
  • 1992 57 35
    20
  • 1993 59 36
    30
  • 1994 73 41
    20
  • 1995 84 45
    20
  • Demand for Books Sales in 1000.
  • Advertising Expenditures in 1000.

42
CORRELATIONS AND COVARIANCES
  • Association can be measured by the degree that
    variables covary (e.g. high values of Y with high
    values of X and low values of Y with low values
    of X). Covariance
  • S (Xt- X)(Yt-Y)
  • COV(X,Y) (2-16)
  • n - 1

43
  • Y Y X
  • 3 1 2
  • 2 4
  • 2 3 6
  • 1
  • 1 2 3 4 5 6 X
  • Y 2 X 4

44
  • Figure 2-7. Example 1 Data
  • Covariance Example 1
  • X Y X-X Y-Y (X-X)(Y-Y)
  • 6 3 2 1 2
    4
  • 4 2 0 0 0 COV
    2
  • 2 1 -2 -1 2
    3-1
  • 4

45
  • 4 Y X
  • 4 2
  • 3 1 4
  • 4 6
  • 2
  • 1
  • 1 2 3 4 5 6 X
  • Y 3 X 4

46
  • Figure 2-8. Example 2 Data
  • Covariance Example 2
  • X Y X-X Y-Y (X-X)(Y-Y)
  • 6 4 2 1 1
    0
  • 4 1 0 -2 0 COV
    0
  • 2 4 -2 1 -1
    3-1
  • 0

47
Correlation A Relative Measure of Association
  • Pearson Correlation Coefficient
  • If r -1, then there is a perfect negative
    relationship.
  • If r 0, then there is no relationship.
  • If r 1, then there is a perfect positive
    relationship.

48
  • Pearson Correlation
  • COV(X,Y)
  • rxy (2-17)
  • SxSy
  • where S(X - X)2 S(Y - Y)2
  • Sx Sy
  • n-1 n-1

49
  • The correlation coefficient for Example 1 with
    perfectly related variables
  • 2202(-22) 404
  • Sx 4 2
  • 3-1 2
  • 120212
  • Sy 1
  • 3-1
  • COV(X,Y) 2
  • r(xy) 1
  • SxSy 21
  • X and Y have a perfect correlation of 1.

50
  • rxy of 1 means that 1Std Dev D in X is associated
    with a 1Std Dev D in Y and vice versa.
  • Example 2, independent variables
  • COV(X,Y) 0
  • rxy 0
  • SxSy SxSy

51
  • Correlation Coefficient
  • Table 2-8. Big City Bookstore Sums of Squares.
  • DEMAND ADVERTISING
  • YEAR Y X (Y-Y) (X-X)
    (Y-Y)2 (X-X)2 (Y-Y)(X-X)
  • 1984 27 20 -20.67 -11.00
    427.11 121.00 227.33
  • 1985 23 20 -24.67 -11.00
    608.44 121.00 271.33
  • 1986 31 25 -16.67 -6.00
    277.78 36.00 100.00
  • 1987 45 28 -2.67 -3.00
    7.11 9.00 8.00
  • 1988 47 29 -.67 -2.00
    .44 4.00 1.33
  • 1989 42 28 -5.67 -3.00
    32.11 9.00 17.00
  • 1990 39 31 -8.67 .00
    75.11 .00 .00
  • 1991 45 34 2.67 3.00
    7.11 9.00 -8.00
  • 1992 57 35 9.33 4.00
    87.11 16.00 37.33
  • 1993 59 36 11.33 5.00
    128.44 25.00 56.67
  • 1994 73 41 25.33 10.00
    641.78 100.00 253.33
  • 1995 84 45 36.33 14.00
    1320.11 196.00 508.67
  • SUM
    3612.67 646.00 1473.00
  • MEAN 47.67 31

52
  • From Table 2-8 we have
  • S (Y - Y)2 3612.67
  • Sy 18.1225
  • n - 1 12 - 1
  • S (X - X)2 646.00
  • Sx 7.663
  • n - 1 12 - 1
  • S (Y-Y)(X-X) 1473
  • COV(X,Y) 133.91
  • n-1 12-1

53
  • COV(X,Y) 133.91
  • rxy .9644
  • SxSy 18.127.663
  • FIGURE 2-9. SEVERAL CORRELATIONS COEFFICIENTS.

54
Statistical Sign. of the Cor. Coef.
  • Bivariate relationship is ND with a standard
    deviation called a standard error equal to
  • Ser (1 - r2)/(n - 2)
  • where r equals rxy and n-2 makes Ser a better
    estimate of the population Fer.
  • tr (r - 0)/ (1-r2)/(n-2) (2-18)

55
  • The statistical hypotheses are
  • H0 r 0 The variables are not related.
  • H1 r ? 0 The variables are related.
  • If tr lt t from the table with n-2 degrees of
    freedom, then infer no relationship between Y and
    X and accept H0 and H1.
  • If tr gt t from the table with n-2 degrees of
    freedom, then infer statistical significance and
    reject H0 and accept H1.

56
  • TABLE 2-9
  • t and Z for .05 and .01 Probabilities
  • df t-value Z-value
  • n-k .05 .01 .05
    .01
  • 1 12.706 63.657 n.a. n.a.
  • 2 4.303 9.925 n.a.
    n.a.
  • 3 3.182 5.841 n.a.
    n.a.
  • 4 2.776 4.604 n.a.
    n.a.
  • 5 2.571 4.032 n.a.
    n.a.
  • 6 2.447 3.707 n.a.
    n.a.
  • 7 2.363 3.499 n.a.
    n.a.
  • 8 2.306 3.355 n.a.
    n.a.
  • 10 2.228 3.169 n.a.
    n.a.
  • 15 2.131 2.947 n.a.
    n.a.
  • 20 2.086 2.845 n.a. n.a.

57
  • TABLE 2-9
  • t and Z for .05 and .01 Probabilities
  • df t-value
    Z-value
  • n-k .05 .01 .05
    .01
  • 30 2.042 2.750 n.a.
    n.a.
  • 40 2.02 2.70 1.96
    2.58
  • 50 2.01 2.68 1.96
    2.58
  • 100 1.98 2.63 1.96
    2.58
  • 500 1.96 2.58 1.96
    2.58
  • df effective no. of observations)
  • k 2 for correlation coefficient significance
    tests.,
  • n.a. not applicable, use the t value.

58
  • When a sample size of 10 is used, 95 of the
    calculated r's will be within 2.23 times Ser.
    Assuming that r .9644, the Ser is
  • 1-r2 1-.96442
  • Ser .08367
  • n-2 12-2
  • r - 0 .9644 - 0
  • tr 11.536
  • Ser .08367

59
  • t -2.228 t 2.228
    t 11.536
  • -2.228.084 2.228.084
  • -.187 .187
  • when true r 0,
  • then, 95 of
  • sample rlt.0156
  • rxy
  • -.187 0
    .187 .9644
  • Figure 2-10. Normally Distributed rxy when
    population rxy 0, n-2 10. Since 11.536 is
    greater than the critical value of 2.228 and 3.17
    from Table 2-7 for n-k of 10, then conclude that
    advertising and demand are significantly
    correlated.

60
  • Cause and Effect X causes Y
  • X and Y are correlated.
  • Changes in X precede changes in Y
  • There are no other possible explanations for
    changes in Y.
  • All other influences have been eliminated as
    causes of Y.
  • Correlation Coefficients Measure Linear
    Association
  • X' 13 - 6X .75X2

61
AUTOCORRELATIONS AND ACF(k)
  • Detecting Univariate Patterns Using Correlations.
  • A way to detect association is to graph Yt and
    Yt-7.
  • However, this may not be an objective way of
    detection.

62
  • Table 2-10. Lagged Values of Yt
  • t Yt Yt-1 Yt-2 Yt-3
  • 1 3
  • 2 6 3
  • 3 8 6 3
  • 4 4 8 6 3
  • 5 4 4 8 6
  • 6 8 4 4 8
  • Yt6 Yt-15 both for observations 1 to 6

63
  • Pearson Autocorrelation
  • COV(Yt,Yt-k)
  • rYtYt-k (2-19)
  • SYtSYt-k

64
  • Table 2-11. Calculation of Pearson
    Autocorrelation - rYtYt-1
  • PRODUCT
  • t ytYt-Yt yt-1Yt-1-Yt-1 ytyt-1 (Yt-Yt)2
    (Yt-1-Yt-1)2
  • 1 n.a.
  • 2 0 -2 0 0
    4
  • 3 2 1 2 4
    1
  • 4 -2 3 -6 4
    9
  • 5 -2 -1 2 4
    1
  • 6 2 -1 -2 4
    1
  • SUM 0 0 -4 16
    16

65
  • Using the results of Table 2-9
  • 16 16
  • SYt 2 Syt-1 2
  • 5-1 5-1
  • -4
  • COV(Yt,Yt-1) -1
  • 5-1
  • -1 -1
  • rYtYt-1 -.2500
  • 22 4

66
  • AutoCorrelation Function (ACF)
  • n-k
  • S (Yt-y)(Yt-k-y)
  • t1k
  • ACF(k) (2-20)
  • n
  • S (Yt-y)2
  • t1
  • ACF uses an overall mean without adjusting the
    denominator, as shown Table 2-12 it's less
    accurate as k increases.
  • Note that Pearson and ACFs are symmetrical about
    lag of 0 (i.e. YtYt).

67
  • Table 2-12. Pearson Correlations VS. ACFs
  • YtYt-2 YtYt-1 YtYt YtYt1 YtYt2
  • PEARSON -.9113 -.250 1.00 -.250 -.9113
  • ACF -.6170 -.223 1.00 -.223
    -.6170

68
  • Approximate Standard Error of ACFs
  • SeACF 1/ n (2-21)
  • where SeACF standard error of ACF
  • n no. of obs. in series
  • ACF t-test
  • ACF(k)
  • t (2-22)
  • SeACF

69
  • Consider a simple example of SeACF for n100,
    ACF(1) .5
  • SeACF 1/100.5 1/.1 .10
  • t .5/.1 5 t-calculated
  • This t value gtgtgt 2, Infer ACF gt 0
  • Infer there is a statistically significant
    autocorrelation between Yt and Yt-1.

70
  • Consider ACFs for SERIESB.DAT, stock prices in
    Table 2-13.
  • The ACFs are very high starting at .9274 at lag 1
    to .0873 through lag 12.
  • An approximate SeACF is
  • 1 1
  • SeACF .1443
  • 48.5 6.9282

71
  • and the appropriate t-test is
  • ACF(1) .9274
  • t 6.425
  • SeACF .1443
  • The first 6 ACFs are statistically significant.
  • Remember that the SeACF is only an approximation,
    valid for n/4 where n is at least 50.

72
  • Table 2-13. ACFs of Series B
  • BtBt-1 BtBt-2 BtBt-3 BtBt-4 BtBt-5
    BtBt-6
  • .9274 .8250 .6932 .5636 .4485 .3415
  • BtBt-7 BtBt-8 BtBt-9 BtBt-10 BtBt-11
    BtBt-12
  • .2503 .1740 .1154 .0870 .0855 .0873

73
Pattern Recognition with ACFs
  • ACFs of Random Series and White Noise
  • Table 2-15 ACFs of Series A
  • AtAt-1 AtAt-2 AtAt-3 AtAt-4 AtAt-5 AtAt-6
  • .1784 .2296 .0738 .1237 .0193 .1718
  • AtAt-7 AtAt-8 AtAt-9 AtAt-10 AtAt-11 AtAt-12
  • .0809 -.0055 .0241 .1467 .1711 .1892
  • Figure 2-11. ACFs for Series A. Here

74
  • ACFs of Random Walk Series
  • Figure 2-12. ACFs of Series B. Here

75
  • ACFs of Trending Series
  • Table 2-16. ACFs of Series C
  • CtCt-1 CtCt-2 CtCt-3 CtCt-4 CtCt-5
    CtCt-6
  • .8558 .8199 .7611 .6948 .6417 .5705
  • CtCt-7 CtCt-8 CtCt-9 CtCt-10 CtCt-11
    CtCt-12
  • .5481 .4691 .4197 .3614 .3156
    .2704
  • Figure 2-13. ACFs Series C. Here

76
  • Trends Versus Random Walks
  • The ACFs of random walks and trends behave
    similarly. Thus, determining which involves
    tests on the series.

77
  • ACFs of Seasonal Series
  • SERIESD.DAT is demand for diet soft drinks in
    Figure 1-7.
  • Table 2-17Autocorrelations of Series D.
  • DtDt-1 DtDt-2 DtDt-3 DtDt-4 DtDt-5
    DtDt-6
  • .7916 .4837 .0857 -.2920 -.5732
    -.6690
  • DtDt-7 DtDt-8 DtDt-9 DtDt-10 DtDt-11
    DtDt-12
  • -.5895 -.3541 -.0733 .2111 .4449
    .5107
  • DtDt-13 DtDt-14 DtDt-15 DtDt-16 DtDt-17
    DtDt-18
  • .4707 .2855 .0261 -.2200 -.4122
    -.5082
  • DtDt-19 DtDt-20 DtDt-21 DtDt-22 DtDt-23
    DtDt-24
  • -.4427 -.2942 -.0819 .1456 .3043
    .3794
  • Figure 2-14 ACFs of Series D. HERE

78
Which Measure of Correlation?
  • May have to use many lags and therefore violate
    n/4 rule.
  • ACFs are approximations, Pearson is not sensitive
    to the lag.
  • Thus, use Pearson when insufficient n.

79
AUTOCORRELATION APPLICATIONS
  • Autocorrelations of Births and Marriages
  • Figure 2-15. Quarterly Births in U.S. Here
  • Table 2-12. ACFs of Marriages. Quarterly Data
    From 198501 To 199204 n32.
  • Lag k 1 2 3 4
  • ACF -.125 -.711 -.109 .875
  • 5 6 7 8
  • -.103 -.613 -.107 .743

80
  • 2SeACFS .36, (i.e. 21/(32).5).
  • Consider the Following Model
  • Xt Xt-4 for t 5 to 32 (2-23)
  • et Xt - Xt-4 for t 5 to 32 (2-24)
  • Figure 2-16. ACFs of Marriage in the U.S. Here
  • Figure 2-17. Mars(t) and Mars(t-4) Here
  • Figure 2-18. Errors Mars(t) - Mars(t-4). Here
  • Figure 2-19. ACFs Mars(t)-Mars(t-4). Here

81
  • Table 2-13. ACFs of Errors Marriages(t) -
    Marriages(t-4).
  • Qtrly Data From 198601 To 199204
  • Lag 1 2 3 4
  • ACF .0027 .2458 .1350 -.2034
  • 5 6 7 8
  • -.0759 -.1055 -.2506 -.1890
Write a Comment
User Comments (0)
About PowerShow.com