Real-Time Tracking - PowerPoint PPT Presentation

About This Presentation
Title:

Real-Time Tracking

Description:

Computer Vision research of the past decade. Hierarchy of ... 'Optical' vision-based. Compass. GPS, ... External effort required ! No 'self-contained' system ... – PowerPoint PPT presentation

Number of Views:401
Avg rating:3.0/5.0
Slides: 69
Provided by: infUs
Category:

less

Transcript and Presenter's Notes

Title: Real-Time Tracking


1
Real-Time Tracking
Axel Pinz Image Based Measurement Group EMT
Institute of Electrical Measurement and
Measurement Signal Processing TU Graz Graz
University of Technology http//www.emt.tugraz.at
/tracking http//www.emt.tugraz.at/pinz axel.pin
z_at_tugraz.at
2
Defining the Terms
  • Real-Time
  • Task dependent, in-the-loop
  • Navigation on-time
  • Video rate 30Hz
  • High-speed tracking several kHz
  • Tracking
  • DoF Degrees of Freedom
  • 2D images, videos ? 2 / 3 DoF
  • 3D scenes, object pose ? 6 DoF

3
Example High-speed, 2D
4
Applications
  • Surveillance
  • Augmented reality
  • Surgical navigation
  • Motion capture (MoCap)
  • Autonomous navigation
  • Telecommunication
  • Many industrial applications

5
Example Augmented Reality
ARToolkit, Billinghurst, Kato, Demo at ISAR2000,
Munich http//www.hitl.washington.edu/research/sh
ared_space/download/
6
AgendaStructure of the SSIP Lecture
  • Intro, terminology, applications
  • 2D motion analysis
  • Geometry
  • 3D motion analysis
  • Practical considerations
  • Existing systems
  • Summary, conclusions

7
2D Motion Analysis
  • Change detection
  • Can be anything (not necessarily motion)
  • Optical flow computation
  • What is moving in which direction ?
  • Hard in real time
  • Data reduction required !
  • Interest operators
  • Points, lines, regions, contours
  • Modeling required
  • Motion models, object models
  • Probabilistic modeling, prediction

8
Change Detection
Pinz, Bildverstehen, 1994
9
Optical Flow (1)
Brox, Bruhn, Papenberg, Weickert ECCV04 best
paper award
  • Estimating the displacement field
  • Assumptions
  • Gray value constancy
  • Gradient constancy
  • Smoothness
  • ...
  • Error Minimization

10
Optical Flow (2)
Brox, Bruhn, Papenberg, Weickert ECCV04 best
paper award !! Not in real-time !!
11
Interest Operators
  • Reduce the amount of data
  • Track only salient features
  • Support region ROI (region of interest)

Feature in ROI
Edge / Line
Blob
Corner
Contour
12
2D Point TrackingUniv. Erlangen, VAMPIRE,
EU-IST-2001-34401
  • Corner detection ? Initialization
  • Calculate cornerness c
  • Threshold ? sensitivity, of corners
  • E.g. Harris / Plessey corners in ROI
  • Cross-correlation in ROI

13
2D Point TrackingUniv. Erlangen, VAMPIRE,
EU-IST-2001-34401
14
Edge TrackingRapid 95, Harris, RoRapid 95,
Armstrong, Zisserman
15
Blob TrackingMean Shift 03, Comaniciu, Meer
16
Contour TrackingCONDENSATION 98-02, Isard,
Toyama, Blake
17
CONDENSATION (2)
  • CONditional DENSity propagATION
  • Requires a good initialization
  • Works with active contours
  • Maintains / adapts a contour model
  • Can keep more than one hypothesis

18
AgendaStructure of the SSIP Lecture
  • Intro, terminology, applications
  • 2D motion analysis
  • Geometry
  • 3D motion analysis
  • Practical considerations
  • Existing systems
  • Summary, conclusions

19
Geometry
  • Having motion in images
  • What does it mean?
  • What can be measured?
  • Projective camera
  • Algebraic projective geometry
  • Camera calibration
  • Computer Vision
  • Reconstruction from uncalibrated views
  • There are excellent textbooks
  • Faugeras 1994, HartleyZisserman 2001, Ma et
    al. 2003

20
Projective Camera (1)
  • Pinhole camera model
  • p (x,y)T is the image of P (X,Y,Z )T
  • (x,y) ... image-, (X,Y,Z) ... scene-coordinates
  • o ... center of projection
  • (x,y,z) ... camera coordinate system
  • (x,y,-f) ... image plane

x
x
P(X,Y,Z)
f
o
z
y
y
Z
X
p(x,y)
Y
21
Projective Camera (2)
  • Pinhole camera model
  • If scene- camera-coordinate system

X
f
o
Z
x
22
Projective Camera (3)
  • Frontal pinhole camera model
  • (x,y,f) ... image plane
  • Normalized camera f1

P(X,Y,Z)
f
x
x
p
o
z
y
y
Z
X
Y
23
Projective Camera (4)
  • real camera
  • 5 Intrinsic parameters (K)
  • Lens distortion
  • 6 Extrinsic parameters (M R, t)
  • ? arbitrary scale

24
Algebraic Projective Geometry SempleKneebone
52
  • Homogeneous coordinates
  • Duality points ? lines
  • Homography H describes any transformation
  • E.g. image ? image transform x Hx
  • All transforms can be described by 3x3 matrices
  • Combination of transformations Matrix product

Translation Rotation
25
Camera Calibration (1)
  • Recover the 11 camera parameters
  • 5 Intrinsic parameters (K fsx, fsy, fs?, u0, v0)
  • 6 Extrinsic parameters (M R, t)
  • Calibration target
  • At least 6 point correspondences ?
  • System of linear equations
  • Direct (initial) solution for K and M

26
Camera Calibration (2)
  • Iterative optimization
  • K, M, lens distortion
  • E.g. Levenberg-Marquart
  • Practical solutions require more points
  • Many algorithms Tsai 87, Zhang 98, Heikkilä 00
  • Overdetermined systems
  • Robustness against outliers
  • E.g. RANSAC
  • Refer to Hartley, Zisserman, 2001

27
What can be measured ...
  • with a calibrated camera
  • Viewing directions
  • Angles between viewing directions
  • 3D reconstruction more than 1 view required
  • with uncalibrated camera(s)
  • Computer Vision research of the past decade
  • Hierarchy of geometries
  • Projective oriented projective affine
    similarity Euclidean

28
AgendaStructure of the SSIP Lecture
  • Intro, terminology, applications
  • 2D motion analysis
  • Geometry
  • 3D motion analysis
  • Practical considerations
  • Existing systems
  • Summary, conclusions

29
3D Motion AnalysisLocation and Orientation
head coord. system
R
t
scene coord. system
6 DoF pose in real-time
?Extrinsic parameters in real-time
30
3D Motion Analysis
  • Tracking technologies, terminology
  • Camera pose (PnP)
  • Stereo, E, F, epipolar geometry
  • Model-based tracking
  • Confluence of 2D and 3D
  • Fusion
  • Kalman Filter

31
Tracking Technologies (1)
  • Mechanical tracking
  • Magnetic tracking
  • Acoustic time of flight
  • Optical ? vision-based
  • Compass
  • GPS,

External effort required ! No self-contained
system
Allen, Bishop, Welch. Tracking Beyond 15
minutes of thought. SIGGRAPH01
32
Tracking Technologies (2)Examples
Allen, Bishop, Welch. Tracking Beyond 15
minutes of thought. SIGGRAPH01
33
Research at EMTHybrid Tracking HT
  • Combine 2 technologies
  • Vision-based
  • Good results for slow motion
  • Motion blur, occlusion, wrong matches
  • Inertial
  • Good results for fast motion
  • Drift, noise, long term stability
  • Fusion of complementary sensors !

Mimicks human cognition !
34
Vision-Based Tracking More Terminology
  • Measure position and orientation in real-time
  • Obtain trajectories of object(s)
  • Moving observer, egomotion inside-out
  • Stationary observer outside-in Tracking
  • Combinations of the above
  • Degrees of Freedom DoF
  • 3 DoF (mobile robot)
  • 6 DoF (head tracking in AR)

35
Inside-out Tracking
  • monocular
  • exterior parameters
  • 6 DoF from ? 4 points
  • wearable, fully mobile

corners
blobs
natural landmarks
36
Outside-in Tracking
stereo-rig IR-illumination
  • no cables
  • 1 marker/device
  • 3 DoF
  • 2 markers 5 DoF
  • 3 markers 6 DoF

devices
37
Camera Pose Estimation
  • Pose estimation Estimate extrinsic parameters
    from known / unknown scene ? find R, t
  • Linear algorithms Quan, Zan, 1999
  • Iterative algorithms Lu et al., 2000
  • Point-based methods
  • No geometry, just 3D points
  • Model-based methods
  • Object-model, e.g. CAD

38
PnP(1)Perspective n-Point Problem
  • Calibrated camera K, C (KKT)-1
  • n point correspondences scene ? image
  • Known scene coordinates of pi, and known
    distances dij pi pj
  • Each pair (pi,pj) defines an angle ?
  • ? can be measured (2 lines of sight, calibrated
    camera)
  • ? constraint for the distance c pi

pi
pj
dij
xi
xj
?
c
39
PnP (2)
pi
pj
dij
xi
xj
?
c
ui
uj
40
PnP (3)
  • P3P, 3 points
  • underdetermined, 4 solutions
  • P4P, 4 points
  • overdetermined, 6 equations, 4 unknowns
  • 4 x P3P, then find a common solution
  • General problem PnP, n points

41
PnP (4)
  • Once the xi have been solved
  • project image points ? scene
  • pi xi K-1 ui
  • find a common R, t for pi ? pi
  • (point-correspondences ? solve a simple system
    of linear equations)

42
Stereo Reconstruction
z
Elementary stereo geometry in canonical
configuration 2 h baseline b Pr - Pl
disparity d There is just column
disparity Depth computation
P(x,y,z)
Pz
y
Cl
Cr
x
f
Pl
Pr
h
h
x0
xr0
xl0
43
Stereo (2)
  • 2 cameras, general configuration Epipolar
    geometry

X
Y
ur
ul
v
ll
lr
Cl
Cr
el
er
44
Stereo (3)
  • Uncalibrated cameras Fundamental matrix F
  • Calibrated cameras Essential matrix E
  • 3x3, Rank 2
  • Many Algorithms
  • Normalized 8-point Hartley 97
  • 5-point (structure and motion) Nister 03

45
Model-Based Tracking
  • Confluence of 2D and 3D Deutscher, Davison, Reid
    01

46
3D Motion Analysis
  • Tracking technologies, terminology
  • Camera pose (PnP)
  • Stereo, E, F, epipolar geometry
  • Model-based tracking
  • Confluence of 2D and 3D
  • Fusion
  • Kalman Filter
  1. General considerations
  2. Kalman Filter
  3. ? EMT HT project

47
General Considerations
  • We have
  • Several sensors (vision, inertial, ...)
  • Algorithms to deliver pose streams for each
    sensor (at discrete times rates may vary
    depending on sensor, processor, load, ...)
  • Thus, we need
  • Algorithms for sensor fusion (weighting the
    confidence in a sensor, sensor accuracy, ...)
  • Pose estimation including a temporal model

Allen, Bishop, Welch. Tracking Beyond 15
minutes of thought. SIGGRAPH01
48
Sensor Fusion
  • Dealing with ignorance
  • Imprecision, ambiguity, contradiction, ...
  • Mathematical models
  • Fuzzy sets
  • Dempster-Shafer evidence theory
  • Probability theory
  • Probabilistic modeling in Computer Vision
  • The topic of this decade !
  • Examples CONDENSATION, mean shift

49
Kalman Filter (1)
Welch, Bishop. An Introduction to the Kalman
Filter. SIGGRAPH01
http//www.cs.unc.edu/welch/kalman
50
Kalman Filter (2)
  • Estimate a process
  • with a measurement

x??n ... State of the process z??m ...
Measurement p, v ... Process and measurement
noise (zero mean) A ... n x n Matrix relates the
previous with the current time step B ... n x l
Matrix relates optional control input u to x H
... n x m Matrix relates state x to measurement z
51
Kalman Filter (3)
  • Definitions
  • Then

52
Kalman Filter (4)
  • Compute
  • with

53
Kalman Filter (5)
http//www.cs.unc.edu/welch/kalman
54
Kalman Filter (6)
http//www.cs.unc.edu/welch/kalman
55
EMT Hybrid Tracker HT Project
  • Ingredients of hybrid tracking
  • Camera(s)
  • Inertial sensors
  • Feature extraction
  • Pose estimation
  • Structure estimation
  • Real-time
  • Synchronisation
  • Kalman filter
  • Sensor Fusion

56
Hybrid Tracking
  • 6 DoF vision-based tracker
  • 6 DoF inertial tracker
  • Fusion by a Kalman filter

57
Structure and Motion
  • Tracking Structure from Motion

58
Research Prototype
  • Tracking subsystem
  • Visualization subsystem
  • Sensors HMD

59
HT Application Example
60
AgendaStructure of the SSIP Lecture
  • Intro, terminology, applications
  • 2D motion analysis
  • Geometry
  • 3D motion analysis
  • Practical considerations
  • Existing systems
  • Summary, conclusions

61
Practical Considerations
  • There are critical configurations !
  • Projective geometry vs. discrete pixels
  • Rays do not intersect !
  • Error minimization algorithms required
  • Robustness (many points) vs. real-time
  • Outlier detection can become difficult !
  • Precision (iterative) vs. real-time (linear)
  • Combination of diverse features
  • Points, lines, curves
  • Jitter, lag
  • Debugging of a real-time system !

62
Existing Systems (1)
  • VR/AR
  • Intersense, Polhemus, A.R.T.
  • MoCap
  • Vicon, A.R.T.
  • Medical tracking
  • MedTronic, A.R.T.
  • Fiducial tracker (Intersense)
  • Research systems
  • KLT (Kanade, Lucas, Tomasi)
  • ARToolkit (Billinghurst)
  • XVision (Hager)

63
Existing Systems (2)
64
Open Issues
  • Tracking of natural landmarks
  • First success in online structure and motion
  • Nister CVPR03, ICCV03, ECCV04
  • (Re-)Initialisation in highly complex scenes
  • Usability !

65
Future Applications
  • Can pose (position and orientation) be exploited
    ?
  • What is the user looking at?
  • Architecture, city guide, museum, emergency,
  • From bulky gear and HMD ? PDA
  • Wireless communication
  • Camera(s)
  • Inertial sensors ( compass, GPS, )
  • Automotive !
  • Driver assistance
  • Autonomous vehicles, mobile robot navigation,
  • Medicine !
  • Surgical navigation
  • Online fusion (temporal genesis, sensory modes, )

66
Summary, Conclusions
  • Real-time pose (6 DoF)
  • 2D and 3D motion analysis
  • Geometry
  • Probabilistic modeling
  • High potential for future developments

67
Acknowledgements
  • EU-IST-2001-34401 Vampire - Visual Active Memory
    Processes and Interactive Retrieval
  • FWF P15748 Smart Tracking
  • FWF P14470 Mobile Collaborative AR
  • Christian Doppler Laboratory for Automotive
    Measurement Research
  • Markus Brandner
  • Harald Ganster
  • Bettina Halder
  • Jochen Lackner
  • Peter Lang
  • Ulrich Mühlmann
  • Miguel Ribo
  • Hannes Siegl
  • Christoph Stock
  • Georg Teichtmeister
  • Jürgen Wolf

68
Further Reading
R. Hartley, A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press,
2nd ed., 2003. Y. Ma, S. Soatto, J. Kosecka, S.
Shankar Sastry. An Invitation to 3D
Vision. Springer, 2004. B.D. Allen, G. Bishop,
G. Welch. Tracking Beyond 15 Minutes of
Thought. SIGGRAPH 2001, Course 11. See
http//www.cs.unc.edu/welch G. Welch, G.
Bishop. An Introduction to the Kalman Filter.
SIGGRAPH 2001, Course 8. See http//www.cs.unc.edu
/welch
Write a Comment
User Comments (0)
About PowerShow.com