Title: Diapositive 1
1Decoherence of a qubit -during free evolution
-during driven evolution -at readout
A -meter
Daniel ESTEVE
of Michel DEVORET
SPEC
YALE
2DECOHERENCE DURING FREE EVOLUTION
dephasing
DEPHASING
3The quantronium 1) a split Cooper pair box
1 d of freedom
42) protected from dephasing
energy (kBK)
n01(GHz)
d/2p
d/2p
Ng
Ng
EJ0.86 kBK EC0.68 kBK
5Readout of persistent currents with dc
switching
3) with a readout junction
d/2p
Ng
6Qubit control Rabi precession
rotation wRabi aURF
7Readout fidelity ?
40 contrast (only)
8Qubit manipulation
arbitrary transformations
adiabatic frequency pulses for Z rotations
robust transformations
Composite p CORPSE 60X 300-X 420 X
p CORPSE
Single pulse
9Decoherence sources in the quantronium circuit
d
10Decoherence in the Quantronium
d
Relaxation
P0
if balanced junction !
11Model for dephasing charge and phase noise
d
DNg ou Dd
(linear coupling)
Spectral density
12Relaxation of the Quantronium
P0
T10.5µs
T1 0.3-2 ms
13Ramsey interferences
Ramsey interferences reveal decoherence of
free evolution during the delay
14Characterizing dephasing 1) decay of Ramsey
fringes
best ones
nRF 16409.50 MHz
15typical sample
Fit with the linked cluster expansion static
approximation ( Makhlin Shnirman, Paladino,
Falci)
16Comparing fits
static approximation ( Makhlin Shnirman,
Paladino, Falci)
Simple exponential
gaussian noise model
500 ns
17away from optimal point
Coherence time
0.028
0.028
0.028
18Characterizing dephasing 2a) phase detuning
pulses
Dt1
p/2X
p/2X
Dt2
19Characterizing dephasing 2b) detuning charge
pulses
20Characterizing decoherence 3) resonance linewidth
215) Probing the dynamics spin echo experiments
22Direct mapping of echo amplitude
low frequency noise
23Echo decay away from optimal point
24Comparison exp vs model noise
spectral densities
non gaussian character of noise ??
Conclusion decay times ok, not time dependence
See G. Ithier et al. Decoherence in a quantum
bit Superconducting circuit circuit,
preprint
25Closer look at charge and phase spectral
densities
Phase noise
Charge noise
Partly external
Cut-off at .5 MHz
26Decoherence driven evolution versus free
evolution
Bloch-Redfield description
Free
See preprint on decoherence G. Ithier et al.
27 Spin locking
Determination of T1
28Determination of T2
Decay of Rabi oscillations with Rabi frequency
29Decay of Rabi oscillations with frequency
T2 480 ns
30 decoherence in the rotating frame ?
lab frame
Ramsey decay
T2300ns
rotating frame
T2480 ns
Conclusion more robust qubit encoding in the
rotating frame
31Decoherence at readout projection fidelity ?
ideal QND readout
Readout 1
Readout 0
errors wrong answer projection error
A -meter
32Decoherence dc versus rf readout
dc readout
V
resets the qubit
dc pulse
? switching
- simple, but
- rep rate limited by quasiparticles
- qubit reset NOT QND
33Decoherence dc versus rf readout
PULSE IN
rf readout (M. Devoret, Yale)
PULSE OUT
U
d
RF pulse
dc pulse
? switching
? d dynamics in anharmonic potential
- simple, but
- -fidelity 40
- qubit reset NOT QND
more complex, but -better fidelity ? -no
reset possibly QND
34 Phase oscillations in a state dependent
anharmonic potential
(I. Siddiqi et al., PRL 93, 207002 (2004))
Qubit control port
The Josephson Bifurcation Amplifier
latching
OSCILLATION AMPLITUDE
MICROWAVE DRIVE AMPLITUDE
35Microwave readout setup
MicroWave Generator
RFin
LO
V
demodulator
300 K
S
G40dB
M
Pulsing
I
Q
Vg
TN2.5K G40dB
-20dB
4 K
-20dB
LP 3.3GHz
-30dB
-30dB
600 mK
1 kW
4 kW
20 mK
LP 2GHz
HP 1.3GHz
Directionnal coupler
50 W
50 W
Sample from Yale
36frequency 1.4GHz
Rabi oscillations
5ns
Readout contrast?
Bifurcation probability
P
Pulse duration (ns)
Microwave power (dBm, top)
(best dc switching 60)
Readout 50 contrast (Yale 60)
37QND readout ?
p pulse on qubit
no pulse on qubit
Readout 1
Readout 1
Readout 2
OR
analysis yields for a single readout
Answer 1
Answer 0
Answer 1
Answer 1
Answer 0
Answer 0
partially QND
(Yale Saclay)
38QND readout with an ac drive at optimal point ?
flux qubit
charge qubit
quantronium
box capacitance
SQUID inductance
JBA
Yale Saclay
TU Delft, Helsinki (for SSET)
partially QND
Chalmers
(in progress)
Readout fidelity QND readout are (still)
issues
39This work on
the
Quantronium
dc
gate
dc
gate
µw
qp
box
trap
A -meter
readout
junction
1µm
SPEC
Appl. Physics
YALE
I. SIDDIQI F. PIERRE E. BOAKNIN L. FRUNZIO
G. ITHIER E. COLLIN P. ORFILA P. SENAT P.
JOYEZ D. VION P. MEESON D. ESTEVE
A. SHNIRMAN G. SCHOEN Y. MAKHLIN F. CHIARELLO
R. VIJAY C. RIGETTI M. METCALFE M. DEVORET
Karlsruhe Landau
Roma
remind 10-4 error rate on qubit gates, QND
useful but not mandatory
40Yale quantronium sample
2mm
41Qubit in ground state
42Quantum Non-Demolition Fraction
? pulse
Readout 1 (R1)
Readout 2 (R2)
5ns
100ns
20ns
125ns
20ns
30ns
Ps(R1)
Ps(R2)
Ps(R1?R2)
Ps(R2/R1)
17.6
13.3
3.3
18.8
no ? pulse
? pulse
61.3
28.0
19.1
31.1
T11.3 ?s
QND Frac. ?