Constraint Based Systems - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

Constraint Based Systems

Description:

MT (Germann et al., ACL-2001) node targetGloss(sourceSentence); while T do ... Propagate implications of a constraint on one variable onto other variables. ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 41
Provided by: Kathleen268
Category:

less

Transcript and Presenter's Notes

Title: Constraint Based Systems


1
Constraint Based Systems
  • Reading Chapter 6
  • Chess article (see links)

2
Agenda
  • Finishing up search for machine translation
  • Constraint satisfaction

3
Hill climbing
  • function HillClimbing(problem, initial-state,
    queuing-fn)
  • node ? MakeNode(initial-state(problem))
  • while T do
  • next ? Best(SearchOperator-fn(node,cost-fn))
  • if(IsBetter-fn(next, node)) then continue
  • else if(GoalTest(node)) then return node
  • else exit
  • end while
  • return Failure

MT (Germann et al., ACL-2001) node ?
targetGloss(sourceSentence) while T do next
? Best( LocallyModifiedTranslationOf(node))
if(IsBetter(next, node)) then continue else
print node exit end while
4
Types of changes
  • Translate one or two words (j1e1j2e2)
  • Translate and insert (j e1 e2)
  • Remove word of fertility 0 (i)
  • Swap segments (i1 i2 j1 j2)
  • Join words (i1 i2)

5
Example
  • Total of 77,421 possible translations attempted

6
(No Transcript)
7
(No Transcript)
8
How to search better?
  • MakeNode(initial-state(problem))
  • RemoveFront(Q)
  • SearchOperator-fn(node, cost-fn)
  • queuing-fn(problem, Q, (Next,Cost))

9
Example 1 Greedy Search MakeNode(initial-state(p
roblem))
Machine Translation (Marcu and Wong,
EMNLP-2002) node ? targetGloss(sourceSentence) w
hile T do next ? Best( LocallyModifiedTranslat
ionOf(node)) if(IsBetter(next, node)) then
continue else print node exit end while
10
Climbing the wrong peak
What sentence is more grammatical? 1. better bart
than madonna , i say 2. i say better than bart
madonna ,
Can you make a sentence with these words? a
and apparently as be could dissimilar firing
identical neural really so things thought
two
11
Language-model stress-testing
  • Input bag of words
  • Output best sequence according to a linear
    combination of an
  • ngram LM
  • syntax-based LM (Collins, 1997)

12
Size 3-7 words long
  • Best searched
  • 32.3 i say better than bart madonna ,
  • Original word order
  • 41.6 better bart than madonna, i say

SBLM trained on an additional 160k WSJ
sentences.
13
Cryptograms
  • QFL HCVPS
  • PX V ANSWLCEZK NCJVS PQ XQVCQX QFL BPSZQL RNZ
    JLQ ZT PS QFL BNCSPSJ VSW WNLX SNQ XQNT ZSQPK RNZ
    JLQ QN QFL NEEPGL CNHLCQ ECNXQ

14
Cryptograms
  • QFL HCVPS
  • THE BRAIN
  • PX V ANSWLCEZK NCJVS PQ XQVCQX
  • IS A WONDERFUL ORGAN IT STARTS
  • QFL BPSZQL RNZ JLQ ZT PS QFL BNCSPSJ
  • THE MINUTE YOU GET UP IN THE MORNING
  • VSW WNLX SNQ XQNT ZSQPK RNZ JLQ QN
  • AND DOES NOT STOP UNTIL YOU GET TO
  • QFL NEEPGL
  • THE OFFICE CNHLCQ ECNXQ
  • ROBERT FROST

15
Constraint Satisfaction Problems
  • Standard representation allows a general-purpose
    approach to search
  • Set of variables, X1, X2 Xn
  • Each variable has domain Di of possible values
  • Set of constraints, C1, C2, Cn
  • State assignment of values to some or all
    variables
  • Xiv,i , Xjvj
  • Solution complete assignment that satisfies all
    constraints
  • Some solutions maximize an objective function

16
Cryptograms
  • QFL HCVPS
  • PX V ANSWLCEZK NCJVS PQ XQVCQX QFL BPSZQL RNZ
    JLQ ZT PS QFL BNCSPSJ VSW WNLX SNQ XQNT ZSQPK RNZ
    JLQ QN QFL NEEPGL CNHLCQ ECNXQ

17
Cryptograms
  • QFL HCVPS
  • THE BRAIN
  • PX V ANSWLCEZK NCJVS PQ XQVCQX
  • IS A WONDERFUL ORGAN IT STARTS
  • QFL BPSZQL RNZ JLQ ZT PS QFL BNCSPSJ
  • THE MINUTE YOU GET UP IN THE MORNING
  • VSW WNLX SNQ XQNT ZSQPK RNZ JLQ QN
  • AND DOES NOT STOP UNTIL YOU GET TO
  • QFL NEEPGL
  • THE OFFICE CNHLCQ ECNXQ
  • ROBERT FROST

18
CSP algorithm
  • Depth-first search often used
  • Initial state the empty assignment all
    variables are unassigned
  • Successor fn assign a value to any variable,
    provided no conflicts w/constraints
  • All CSP search algorithms generate successors by
    considering possible assignments for only a
    single variable at each node in the search tree
  • Goal test the current assignment is complete
  • Path cost a constant cost for every step

19
Local search
  • Complete-state formulation
  • Every state is a compete assignment that might or
    might not satisfy the constraints
  • Hill-climbing methods are appropriate

20
Dimensions of CSPs
  • Discrete/finite domains
  • Map coloring
  • 8 queens
  • Nonlinear constraints
  • No general solution
  • Unary constraints
  • Absolute constraints
  • Infinite domains
  • Scheduling calendars (discrete)
  • Schedule experiments for Hubble
  • Linear constraints
  • Binary/N-ary constraints
  • Preferences
  • Prof. McKeown prefers after 1pm

21
(No Transcript)
22
  • M GWDX URNMRPR MD QD QCXRLNMCR, QNXFWZOF M QH
    ULMDOMDO Q KFQDOR WC ZDGRLARQL. AWWGS QNNRD

23
  • M GWDX URNMRPR MD QD A BCDE A
    AD DQCXRLNMCR, QNXFWZOF M QH E
    A E
  • ULMDOMDO Q KFQDOR WC AD AD
    D C ZDGRLARQL.
  • DB
  • AWWGS QNNRD
  • B
    D

24
  • M GWDX URNMRPR MD QD A BCDI A
    AD DQCXRLNMCR, QNXFWZOF M QH I
    A I
  • ULMDOMDO Q KFQDOR WC AD AD
    D C ZDGRLARQL.
  • DB
  • AWWGS QNNRD
  • B
    D

25
  • M GWDX URNMRPR MD QD A BCDO A
    AD DQCXRLNMCR, QNXFWZOF M QH O
    A O
  • ULMDOMDO Q KFQDOR WC AD AD
    D C ZDGRLARQL.
  • DB
  • AWWGS QNNRD
  • B
    D

26
  • M GWDX URNMRPR MD QD A BCDU A
    AD DQCXRLNMCR, QNXFWZOF M QH U
    A U
  • ULMDOMDO Q KFQDOR WC AD AD
    D C ZDGRLARQL.
  • DB
  • AWWGS QNNRD
  • B
    D

27
  • M GWDX URNMRPR MD QD A BCE A
    AE EQCXRLNMCR, QNXFWZOF M QH
    A
  • ULMDOMDO Q KFQDOR WC AE AE
    E C ZDGRLARQL.
  • EB
  • AWWGS QNNRD
  • B
    E

28
What additional knowledge about language would be
helpful?
29
General purpose methods for efficient
implementation
  • Which variable should be assigned next?
  • in what order should its values be tried?
  • Can we detect inevitable failure early?
  • Can we take advantage of problem structure?

30
Order
  • Choose the most constrained variable first
  • The variable with the fewest remaining values
  • Minimum Remaining Values (MRV) heuristic
  • What if there are gt1?
  • Tie breaker Most constraining variable
  • Choose the variable with the most constraints on
    remaining variables

31
Order on value choice
  • Given a variable, chose the least constraining
    value
  • The value that rules out the fewest values in the
    remaining variables

32
  • M GWDX URNMRPR MD QD I
    I I AQCXRLNMCR, QNXFWZOF M QHA
    I A I A
  • ULMDOMDO Q KFQDOR WC I I
    A A ZDGRLARQL.
    A AWWGS QNNRD

  • A

33
  • M GWDX URNMRPR MD QD I N
    I IN ANQCXRLNMCR, QNXFWZOF M QHA
    I A I A
  • ULMDOMDO Q KFQDOR WC IN IN A
    AN ZDGRLARQL. N A AWWGS
    QNNRD

  • A N

34
Forward Checking
  • Keep track of remaining legal values for
    unassigned variables
  • Terminate search when any variable has no legal
    values

35
  • M GWDX URNMRPR MD QD I
    I I AQCXRLNMCR, QNXFWZOF M QHA
    I A I A
  • ULMDOMDO Q KFQDOR WC I I
    A A ZDGRLARQL. AWhen M
    I selected D (F N S T)
  • When QA selected D (N S T)

36
  • M GWDX URNMRPR MD QD I DONT EL I E E
    IN ANQCXRLNMCR, QNXFWZOF M QHA FTERL I FE
    ALTHO GH I AM
  • ULMDOMDO Q KFQDOR WC R IN G I NG A
    HANGE OFZDGRLARQL. NDERWEAR
  • AWWGS QNNRD
  • WOODY
    ALLEN

37
  • M GWDX URNMRPR MD QD I DONT CEL I E E IN
    ANQCXRLNMCR, QNXFWZOF M QHA FTERL I FE
    ALTHO GH I AM
  • ULMDOMDO Q KFQDOR WCCR IN G I NG A
    HANGE OFZDGRLARQL. NDERWEAR
  • Select UC -gt the domain of P is empty. Requires
    backtracking even before taking the next branch.
    Avoids selection Z, K next before discovering the
    error.

38
  • M GWDX URNMRPR MD QD I DONT BEL I E VE IN
    ANQCXRLNMCR, QNXFWZOF M QHA FTERL I FE ALTHO
    UGH I AM
  • ULMDOMDO Q KFQDOR WCBR IN G I NG A CHANGE
    OFZDGRLARQL.UNDERWEAR
    AWWGS QNNRD
  • WOODY
    ALLEN

39
Speed-ups
Problem Backtracking BTMRV Forward Checking FVMRV
USA (gt1000K) (gt1000K) 2K 60
N-Queens (gt40000K) 13,500K (gt40000K) 817K
Zebra 3,859K 1K 35K .5K
Random1 415K 3K 26K 2K
Random2 942K 27K 77K 15K
40
Other types of improvements
  • Constraint propagation
  • Propagate implications of a constraint on one
    variable onto other variables. Not only values,
    but constraints between other variables
  • Intelligent backtracking
  • Conflict-directed backtracking Save possible
    conflicts for a variable value on assignment.
  • Back jump to assignment of values

41
Crossword Puzzles
Write a Comment
User Comments (0)
About PowerShow.com