QuasiMonte Carlo Methods Spring 2005 - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

QuasiMonte Carlo Methods Spring 2005

Description:

Last Class. Numerical Distribution. Random Choices from a finite set ... Polar method. Exponential distribution. Shuffling. This Class. Quasi-Monte Carlo ... – PowerPoint PPT presentation

Number of Views:84
Avg rating:3.0/5.0
Slides: 15
Provided by: steve1807
Category:

less

Transcript and Presenter's Notes

Title: QuasiMonte Carlo Methods Spring 2005


1
Quasi-Monte Carlo MethodsSpring 2005
  • By Yaohang Li, Ph.D.
  • Department of Computer Science
  • North Carolina AT State University
  • yaohang_at_ncat.edu

2
Review
  • Last Class
  • Numerical Distribution
  • Random Choices from a finite set
  • General methods for continuous distributions
  • inverse function method
  • acceptance-rejection method
  • Distributions
  • Normal distribution
  • Polar method
  • Exponential distribution
  • Shuffling
  • This Class
  • Quasi-Monte Carlo
  • Paper Presentation List
  • Next Class
  • Test of Random Numbers (William Mirugi)

3
Random Numbers
  • Random Numbers
  • Pseudorandom Numbers
  • Monte Carlo Methods
  • Quasirandom Numbers
  • Uniformity
  • Low-discrepancy
  • Quasi-Monte Carlo Methods
  • Mixed-random Numbers
  • Hybrid-Monte Carlo Methods

4
Discrepancy
  • Discrepancy
  • For one dimension
  • ? is the number of points in interval 0,u)
  • For d dimensions
  • E a sub-rectangle
  • m(E) the volume of E

5
A Picture is Worth a Thousand Words
6
Quasi-Monte Carlo
  • Motivation
  • Convergence
  • Monte Carlo methods O(N-1/2)
  • quasi-Monte Carlo methods O(N-1)
  • Integration error bound
  • Koksma-Hlwaka Inequality Theorem
  • V(f) bounded variation
  • Criterion
  • d is a dimension dependent constant

7
Quasi-Monte Carlo Integration
  • Quasi-Monte Carlo Integration
  • If x1, , xn are from a quasirandom number
    sequence
  • Compared with Crude Monte Carlo
  • Only difference is the underlying random numbers
  • Crude Monte Carlo
  • pseudorandom numbers
  • Quasi-Monte Carlo
  • quasirandom numbers

8
Discrepancy of Pseudorandom Numbers and
Quasirandom Numbers
  • Discrepancy of Pseudorandom Numbers
  • O(N-1/2)
  • Discrepancy of Quasirandom Numbers
  • O(N-1)

9
Analysis of Quasi-Monte Carlo
  • Convergence Rate
  • O(N-1)
  • Actual Convergence Rate
  • O((logN)kN-1)
  • k is a constant related to dimension
  • when dimension is large (gt48)
  • the (logN)k factor becomes large
  • the advantage of quasi-Monte Carlo disapears

10
Quasi-random Numbers
  • van der Corput sequence
  • digit expansion
  • radical-inverse function
  • for an integer bgt1, the van der Corput sequence
    in base b is x0, x1, with xn?b(n) for all
    ngt0

11
Halton Sequence
  • Halton Sequence
  • s dimensional van der Corput sequence
  • xn(?b1(n), ?b2(n),, ?bs(n))
  • b1, b2, bs are relatively prime bases
  • Scrambled Halton Sequence
  • Use permutations of digits in the digit expansion
    of each van der Corput sequence
  • Improve the randomness of the Halton sequence

12
Discussion
  • In low diemensions (slt30 or 40), quasi-Monte
    Carlo methods in numerical integrations are
    better than usual Monte Carlo methods
  • Quasi-Monte Carlo method is deterministic method
  • Monte Carlo methods are statistic methods
  • There are serially efficient implementation of
    quasirandom number sequences
  • Halton
  • Sobol
  • Faure
  • Niederreiter
  • quasi-Monte Carlo can now efficiently used in
    integration
  • Still in research in other areas

13
Summary
  • Quasirandom Numbers
  • Discrepancy
  • Implementation
  • van der Corput
  • Halton
  • Quasi-Monte Carlo
  • Integration
  • Convergence rate
  • Comparison with Crude Monte Carlo

14
What I want you to do?
  • Review Slides
  • Read the UNIX handbook if you are not familiar
    with UNIX
  • Review basic probability/statistics concepts
  • Work on your Assignment 2 and 3
  • Select your presentation topic
Write a Comment
User Comments (0)
About PowerShow.com