PROBABILITY METHOD IN TRAFFIC ENGINEERING - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

PROBABILITY METHOD IN TRAFFIC ENGINEERING

Description:

PROBABILITY METHOD IN TRAFFIC ENGINEERING. PROBABILITY METHOD ... A variable which can take on any value within a given range is called a continuous variable. ... – PowerPoint PPT presentation

Number of Views:15
Avg rating:3.0/5.0
Slides: 22
Provided by: wanmohdnaz
Category:

less

Transcript and Presenter's Notes

Title: PROBABILITY METHOD IN TRAFFIC ENGINEERING


1
PROBABILITY METHOD IN TRAFFIC ENGINEERING
2
PROBABILITY METHOD
  • Poisson Distribution
  • Normal Distribution
  • Binomial Distribution

3
BINOMIAL DISTRIBUTION
  • Consider an observation in which a particular
    result may or may not vehicle break a speed
    limit.
  • For example, a number of vehicle is observation
    and it may be acceptable or not be acceptable
    speed limit

4
BINOMIAL DISTRIBUTION
  • EXAMPLE ( All Units in km/h)
  • 63, 63, 55, 58, 68, 61, 68, 63, 55, 62, 72, 57,
    61, 68, 78, 64, 63, 51, 59, 75, 70, 74, 58, 69,
    65, 66, 58, 72, 74, 75, 60, 73, 69, 57, 63, 65,
    72, 59

5
BINOMIAL DISTRIBUTION
  • nCk pk q n-k
  • p the probability is acceptable or occur
  • q the probability is not acceptable or occur
  • 1 p
  • n number of observation
  • k frequency

6
BINOMIAL DISTRIBUTION
  • Let say, speed limit that particular road is 60
    km/h. Probability vehicle not break speed limit,
    p 11 / 38
  • 0.285
  • The first 10 vehicles observe, only 2 vehicle
    not break speed limit
  • So, n 10 and k 2

7
BINOMIAL DISTRIBUTION
  • P (vehicle not break speed limit)
  • nCk pk q n-k
  • 10C2 0.2852 0.715 10-2
  • 45 ( 0.082) (0.0683)
  • 0.252
  • 25.2

8
POISSON DISTRIBUTION
  • Know as counting distribution. It has the clear
    physical meaning of a number of events X
    occurring in a specified counting interval of
    duration T
  • Indeed, the Poisson would have been a suitable
    approximation to the low p, high n cases in the
    preceding subsection

9
POISSON DISTRIBUTION
  • P( X r ) e -? ?r / r!
  • ? Mean of distribution
  • Example Probability driver drive 54km/h
  • from group data, ? 64.579 km/h,
  • P( X 54 ) e -64.579 64.57954 / 54!
  • 8.987x10-29 5.558x1097/2.308x1071
  • 0.0216
  • 2.16

10
NORMAL DISTRIBUTION
  • A variable which can take on any value within a
    given range is called a continuous variable.
  • The normal distribution allows us to calculate
    the probability of continuous variable falling
    within a particular range of value
  • The normal probability density function is a
    bell-shaped curve

11
NORMAL DISTRIBUTION
  • Z (x µ) / s
  • µ mean
  • s standard deviation

12
NORMAL DISTRIBUTION
13
NORMAL DISTRIBUTION
  • Single operation
  • P (x lt a) ? Direct Read From Table (DRT)
  • P (x gt a) ? (1 DRT)
  • P (x lt -a) ? ( 1 DRT)
  • P (x gt -a) ? (DRT)

14
NORMAL DISTRIBUTION
  • For Example group data, µ 65 and s 7
  • Z (x µ) / s
  • P (x lt 54) P (Z lt (54 - 65)) / 7)
  • P( Z lt -11 / 7)
  • P ( Z lt -1.57)
  • 1 0.9418
  • 0.0582
  • 5.82

15
NORMAL DISTRIBUTION
  • P (x gt 54) P (Z gt (54 - 65)) / 7)
  • P( Z gt -11 / 7)
  • P ( Z gt -1.57)
  • 0.9418
  • 94.18

16
NORMAL DISTRIBUTION
  • P (x lt 74) P (Z lt (74 - 65)) / 7)
  • P( Z lt 9 / 7)
  • P ( Z lt 1.29)
  • 0.9015
  • 90.15

17
NORMAL DISTRIBUTION
  • P (x gt 74) P (Z gt (74 - 65)) / 7)
  • P( Z gt 9 / 7)
  • P ( Z gt 1.29)
  • 1- 0.9015
  • 0.0985
  • 9.85

18
NORMAL DISTRIBUTION
  • Double operation
  • a lt x lt b ? P ( x lt b) P (x lt a)
  • DRT - DRT
  • -a lt x lt b ? P( x lt b) P (x lt -a)
  • DRT - (1-DRT)
  • -a lt x lt -b ? P ( x lt -b) P ( x lt -a)
  • (1 DRT) (1 DRT)

19
NORMAL DISTRIBUTION
  • P(54 lt x lt 74) P( Zlt(74-65)/7) P(Zlt(54-65)/7)
  • P ( Z lt 1.29) P (Z lt
    -1.57)
  • 0.9015 - (1 - 0.9418 )
  • 0.9015 - 0.0582
  • 0.8433
  • 84.33

20
NORMAL DISTRIBUTION
  • P( 70lt x lt74) P( Zlt(74-65)/7) P(Zlt(70-65)/7)
  • P ( Z lt 1.29) P (Z lt
    0.71)
  • 0.9015 - 0.7611
  • 0.1404
  • 14.04

21
NORMAL DISTRIBUTION
  • P(54lt xlt60) P( Zlt(60-65)/7) P(Zlt(54-65)/7)
  • P ( Z lt -0.71) P (Z
    lt -1.57)
  • (1 - 0.7611) - (1 -
    0.9418 )
  • 0.2389 - 0.0582
  • 0.1807
  • 18.07
Write a Comment
User Comments (0)
About PowerShow.com