Ch 2.7 Error Detection - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Ch 2.7 Error Detection

Description:

Mostly used in data communication ... on an arbitrary binary pattern P. Let P = 1011. ... Used primarily in communication. Can only detect errors. Hamming Codes ... – PowerPoint PPT presentation

Number of Views:88
Avg rating:3.0/5.0
Slides: 26
Provided by: Kine6
Category:

less

Transcript and Presenter's Notes

Title: Ch 2.7 Error Detection


1
Ch 2.7Error Detection Correction
  • CS-147
  • Tu Hoang

2
Error Detection and Correction
  • No communication channel or storage device is
    completely error-free
  • As the number of bits per area or the
    transmission rate increases, more errors occur.
  • Impossible to detect or correct 100 of the
    errors

Ch 2.7 gt Introduction
3
Error Detection and Correction
  • 3 Types of Error Detection/Correction Methods
  • Cyclic Redundancy Check (CRC)
  • Hamming Codes
  • Reed-Solomon (RS)
  • 10011001011 1001100 1011
  • Code word information error-checking bits/
  • bits parity bits/
  • syndrome/
  • redundant bits

Ch 2.7 gt Introduction
4
Cyclic Redundancy Check (CRC)
  • Mostly used in data communication
  • Tells us whether an error has occurred, but does
    not correct the error.
  • This is a type of systematic error detection
  • The error-checking bits are appended to the
    information byte

Ch 2.7 gt Cyclic Redundancy Check
5
Modulo 2 Arithmetic
  • Addition Rules
  • 0 0 0 Ex 1011
  • 0 1 1 110
  • 1 0 1 1101
  • 1 1 0

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
6
Modulo 2 Arithmetic
  • Division
  • ________
  • Ex 1011 1001011
  • divisor dividend

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
7
Modulo 2 Arithmetic
  • Division
  • ____1___
  • Ex 1011 1001011
  • 1011

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
8
Modulo 2 Arithmetic
  • Division
  • ____1___
  • Ex 1011 1001011
  • 1011
  • 0010

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
9
Modulo 2 Arithmetic
  • Division
  • ____10__
  • Ex 1011 1001011
  • 1011
  • 00100

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
10
Modulo 2 Arithmetic
  • Division
  • ____101_
  • Ex 1011 1001011
  • 1011
  • 001001

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
11
Modulo 2 Arithmetic
  • Division
  • ____101_
  • Ex 1011 1001011
  • 1011
  • 001001
  • 1011

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
12
Modulo 2 Arithmetic
  • Division
  • ____101_
  • Ex 1011 1001011
  • 1011
  • 001001
  • 1011
  • 0010

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
13
Modulo 2 Arithmetic
  • Division
  • ____1010
  • Ex 1011 1001011
  • 1011
  • 001001
  • 1011
  • 00101

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
14
Modulo 2 Arithmetic
  • Division
  • ____1010 ? Quotient
  • Ex 1011 1001011
  • 1011
  • 001001
  • 1011
  • 00101 ? Remainder

Ch 2.7 gt Cyclic Redundancy Check gt Modulo 2
Arithmetic
15
Calculating and Using CRCs
  • Let the information byte F 1001011
  • The sender and receiver agree on an arbitrary
    binary pattern P. Let P 1011.
  • Shift F to the left by 1 less than the number of
    bits in P. Now, F 1001011000.
  • Let F be the dividend and P be the divisor.
    Perform modulo 2 division.
  • After performing the division, we ignore the
    quotient. We got 100 for the remainder, which
    becomes the actual CRC checksum.
  • Add the remainder to F, giving the message M
  • 1001011 100 1001011100 M

Ch 2.7 gt Cyclic Redundancy Check gt Calculate CRCs
16
Calculating and Using CRCs
  • M is decoded and checked by the message receiver
    using the reverse process.
  • ____1010100
  • 1011 1001011100
  • 1011
  • 001001
  • 1001
  • 0010
  • 001011
  • 1011
  • 0000 ? Remainder

Ch 2.7 gt Cyclic Redundancy Check gt Calculate CRCs
17
Hamming Codes
  • One of the most effective codes for
    error-recovery
  • Used in situations where random errors are likely
    to occur
  • Error detection and correction increases in
    proportion to the number of parity bits
    (error-checking bits) added to the end of the
    information bits
  • code word information bits parity bits
  • Hamming distance the number of bit positions in
    which two code words differ.
  • 10001001
  • 10110001
  • Minimum Hamming distance or D(min) determines
    its error detecting and correcting capability.

Ch 2.7 gt Hamming Codes
18
Hamming Codes
  • Hamming codes can always detect D(min) 1
    errors, but can only correct half of those errors.

Ch 2.7 gt Hamming Codes
19
Hamming Codes
  • EX. Data Parity Code
  • Bits Bit Word
  • 00 0 000 01 1 011 10 1
    101 11 0 110
  • 000 100 001 101 010 110
    011 111

Ch 2.7 gt Hamming Codes
20
Hamming Codes
  • Single parity bit can only detect error, not
    correct it
  • Error-correcting codes require more than a single
    parity bit

Ch 2.7 gt Hamming Codes
21
Hamming Codes
  • EX. 0 0 0 0 0 0 1 0 1 1 1 0 1 1
    0 1 1 1 0 1
  • Minimum Hamming distance 3
  • Can detect up to 2 errors and correct 1 error

Ch 2.7 gt Hamming Codes
22
Hamming Codes
  • Hamming codes work well when we can reasonably
    expect errors to be rare events. (ex hard
    drives)
  • Hamming codes are useless when multiple adjacent
    errors are likely to occur.
  • These errors are called burst errors that
    result from mishandling removable media (ex
    magnetic tapes or CDs).

Ch 2.7 gt Hamming Codes
23
Reed-Solomon (RS)
  • Operates at block level instead of bit level
  • - RS(n, k) codes are defined using the following
    parameters
  • s the number of bits in a char (8 bits)
  • k the number of s-bit characters comprising
    the data block
  • n the number of bits in the code word
  • RS(n, k) can correct (n k)/2 errors in the k
    information bytes
  • EX RS(255, 223)
  • can correct up to 16 erroneous bytes in the
    information block

Ch 2.7 gt Reed-Solomon
24
Summary
  • 3 Types of Error Detection/Correction Methods
  • Cyclic Redundancy Check (CRC)
  • Used primarily in communication
  • Can only detect errors.
  • Hamming Codes
  • Can detect and correct errors.
  • The more parity bits added, the more errors can
    be detected and corrected.
  • Used to detect errors in memory bits or fixed
    magnetic disk drives, in which errors occur
    randomly.

Ch 2.7 gt Summary
25
Summary
  • Reed-Solomon (RS)
  • Can detect errors that occur in blocks (adjacent
    errors)
  • Used to detect errors in removable media such as
    magnetic tapes or compact disks, in which burst
    errors occur due to mishandling and
    environmental stress.

Ch 2.7 gt Summary
Write a Comment
User Comments (0)
About PowerShow.com