Title: Prsentation PowerPoint
1Investigation of OFI seeded soft x-ray lasers
Stéphane SEBBAN J. Ph. Goddet, Ph. Zeitoun, J.
Gauthier and C. Valentin Coherent x-ray group
(SCX) LABORATOIRE DOPTIQUE APPLIQUEE (LOA)
2Collaborators
O. Guilbaud, S. Kazamias, K. Cassou, A. Klisnick,
D. Ros, J. Benredjem, and G. Jamelot LIXAM,
France G Maynard, B. Cros, and A. Boudaa LPGP,
France T. Mocek, M. Kozlova, and K.
Jakubczak Department of X-ray Lasers, Czech
Republic D. Joyeux and S. de Rossi Laboratoire
Charles Fabry de lInstitut dOptique, France
3Coherent XUV sources (3-60 nm)
XRL
VUV-FEL
Harmonics
4There is a large variety of ASE soft x-ray lasers
Laser drivers
Soft x-ray laser output
500 J 600 ps
Up to 10 mJ 100 ps
Less than 100 J 100 ps
Few 100 µJ 20-40 ps
Few J few ps
20-30 µJ 2-5 ps
few 100 mJ 30-50 fs
Up to 1 µJ 5 ps
5ps ASE XRL ehibits an inhomogeneous beam profile
Source micro-sources spatially incoherent and
temporally coherent
O. Guilbaud et al. Europhysics Lett. 74 (2006) 823
6Objective build a soft XRL chain by coupling
harmonics to a soft XRL amplifying plasma?
Oscillator
Imaging optic
Soft x-ray amplifier
- High order harmonics
- Beam quality
- Tunable
- Coherent
- Short duration
- Not costly
XRL laser beam
T. Ditmire et al., Phys. Rev. A 51, 0R4337 (1995)
7The collisional excitation population inversion
scheme is the most robust
Pd-like xenon
Ni-like krypton
Rh-like ground state (4d9)
Co-like ground state (1s22s23p63s23p63d9)
3d95f
4d95f
1P1
1P1
3d94f
4d94f
3d94d
1P1
3D1
1P1
3D1
4d95d
3P1
3D1
65.9 Å
66.3 Å
1S0
1S0
96.3 Å
98.1 Å
99.1 Å
3d94p
3P1
3D1
4d95p
326 Å
3D1
1P1
418 Å
143.6 Å
120.1 Å
76.8 Å
76.3 Å
75.4 Å
1P1
3D1
3P1
1P1
3P1
167.6 Å
117.7 Å
165.3 Å
161.9 Å
115.7 Å
114.9 Å
Ni-like ground state (1s22s23p63s23p63d10)
Pd-like ground state (4d10)
8OFI collisional soft x-ray amplifier principle
? Ionization
? Pumping hot electrons
Xe8 I1.6 1016 W.cm-2 Kr8 I2.3 1016
W.cm-2
Lemoff, B.E., Barty, C.P.J. and Harris, S.E.,
Opt. Lett., 19, 8, 569 (1994)
9Modelling our collisionnal OFI XRL amplifier
B. Cros et al. PRA 73, 033801 2006
10OFI collisional soft x-ray amplifier 2D gain
distribution
Advantages Low density gradient (no
refraction) Longidudinal pumping no TW Circular
aperture Sharp edge filtering of seed possible
Disadvantages Low sat. fluence Lambda 32 nm
11 Salle jaune laser (LOA)
12Coupling one harmonic to an XRL amplifier set up
20 mJ, 30 fs
Toroidal mirror
HHG cell
Delay line
l/4
1 J, 30 fs
XRL amplifier
Al filter
XRL laser beam
To diagnostics
13Evidence of amplification of the 32.8 nm Kr IX
laser
Wavelength
Ph. Zeitoun at al. Nature, Vol 431, 09/2004, pp.
466
14Amplification factor vs time Plasma density
15Absolute measurement of the gain duration
T. Mocek et al., Phys. Rev. Lett.95, 173902 (2005)
16Far field pattern of the 32.8 nm seeded x-ray
laser
Harmonic seed
Amplified harmonic
Amplification factor from 15 to 600 Divergence
1-2 mrad
Ph. Zeitoun at al. Nature, Vol 431, 09/2004, pp.
466
17The amplification preserves the polarization
18The amplifier can be used as a spatial filter
amplifier
- Possible improvement of
- the spatial coherence
- beam profile (energy distribution)
- wavefront distorsion
19Far field pattern of the 32.8 nm seeded x-ray
laser
HHG
45 mirror (B4CMoSi )
CCD
Al filter
XRL source
SXRL
20Far field pattern of the 32.8 nm seeded x-ray
laser
E0.7 µJ per shot Divergence 0.7 mrad
21Transverse coherence Youngs double slit
experiment
CCD
45 mirror
Double slits (100, 200, 300 µm)
XRL plasma
22High spatial coherence of the seeded soft
XRL (Young slit experiment)
100 µm
200 µm
300 µm
Oscillator
Amplifier
Soft x-ray laser
23Contrast of the fringes pattern (Young slit
experiment)
J. Ph. Goddet et al., Opt. Lett., 32, 1498 (2007)
24Principle of Hartmann wavefront sensor
Hole array
EUV CCD camera
F Dy/L
y
x
z
L
25Hartmann wavefront sensor Calibration setup at 32
nm
Perfect diffracted wavefront
Hartmann pattern
pinhole
diffraction pattern
LOA-Imagine Optic
26Wavefront measurement of the 32.8 nm laser
radiation
First diffraction limited soft x-ray laser
27Reconstruction of the intensity distribution of
the 32.8 nm laser beam at the exit of the
amplifying plasma column
amplifier
28Longitudinal coherence measurement
Wavefront division interferometer
A. Klisnick et al., J.Q.S.R.T 99, 970 (2006)
29Longitudinal coherence measurement
Longitudinal coherence measurement
Coherence time (tc) 5.5 ps Spectral bandwidth
(??) 1.11011 Hz
?? 3.61 mÅ
30Coherence time versus pulse duration
Duration of 5-6 ps
Coherence time fo 5.5 ps
This 32.8 nm seeded laser has reached the Fourier
limit
31Actual performances of the seeded OFI XRL
Wavelength 41.8 and 32.8 nm Photons/shot
11011 at 10 Hz (1 µJ) Dl/l
110-5 Divergence lt1 mrad Spatial profil
gaussian Wavefront l/17 at 32.8 nm Duration
about 5 ps Transverse coherence
Good Longitudinal coherence full Polarization
Yes
32Possible improvements of the system
IR Harm laser
Better coupling
IR OFI laser
Capillary amplifier longer focal length
25 mm
33Guiding techniques for OFI XRL
Hollow capillary tubes
Capillary discharge system
T. Mocek, Phys. Rev. A 71 (2005) 13805 B. Cros,
Phys Rev. A 73 (2006) 033801
Phys. Rev Lett 91 (2003) 205001 Phys. Rev A 70
(2004) 23821
34Calculated distribution of Xe charge states for
a 4 mm cell and a 25 mm capillary tube (Ø 300
µm)
Cell Xe, 20 mbar, I5 1017 cm-3
LASER
Capillary 10 mbar of Xe
LASER
300 µm
25 mm
LOA-LPGP
35Strong lasing action up to 55 mm promising
amplifier
X-ray signal (a.u)
Length (mm)
B. Cros, Phys Rev. A 73 (2006) 033801
36Conclusion
The 32.2 nm seeded SXRL has reach the diffraction
and the Fourier limit. (1 µJ, 1 mrad, coherent,
polarized, 10 Hz) Potential for amplifying
harmonics up to multi 10-µJ by using guiding
techniques or higher density plasma Excellent
scientific tool for applications such as soft
x-ray holography