Title: Modelling Spatial Trajectories
1(No Transcript)
2Modelling Spatial Trajectories David R.
Brillinger Statistics Department University of
California, Berkeley 2? ? 1 Math Stat, Mac,
20 November 2008
31.1 Introduction. Lotation r (x,y) Time
t Trajectory r(t), -? lt t lt ? Trajectory data
r(ti), i1,...,n, and the ti Random
trajectory r(t,?), ? random
variable Difference, differential equations,
potential functions assessing websites,
player movement, iceberg motion, bird navigation,
hazard exposure, ocean drifters, wildlife
movement, image scanning, ...
41.2 History and examples 1.2.1 Planetary motion
Brahe (data) Kepler (laws) Newton (DEs)
Lagrange (potential function) G/r0 r
, G gravity
5 1.2.2 Brownian motion Robert Brown
(1827) Bachelier (1900) Einstein
(1905), Smoluchowsky (1905) Langevin (1908)
SDE
X "complimentary force", stochastic
6Perrin (1913)
71.2.3 Monk seals. Hawaiian (Monachus
schauinslandi) 2.2m, 250kg, life span 30
yr Endangered species, 1400 Risks
environmental change, habitat modification,
reduction in prey, humans, random fluctuations
8(No Transcript)
9(No Transcript)
101.2.4. 2006 World Cup in Germany Argentina
vs. Serbia-Montenegro game
11(No Transcript)
121.2.5 Elk. Starkey Reserve. Explanatory x(t)
(ATV) Can elk, deer, cows, humans coexist?
131.2.6 Whale shark. Vulnerable to
extinction Filter feeders eat krill,
Largest living fish Tropical and
water-temparate regions One was 41.50Â ft
long, 47,300lb, with girth 23.0Â ft.
14(No Transcript)
15OZ
161.3 Statistical concepts and models. 1.3.1
Displays (x(ti),y(ti)), i1,2,... joined by
straight lines plus background
estimated speed vs. (ti1ti )/2 bivariate
density estimate bagplot
17(No Transcript)
181.3.2 Autoregressive models simple random
walk rt1 rt et1, t0,1,2, ...
VAR(1) rt1 art et1
M. Moore VARIMA(p,2,0) for iceberg tracks
191.3.3 Stochastic differential equations (SDEs).
B(t) bivariate Brownian
B(tdt) B(t) dB(t) dr(t)
µ(r(t),t)dt s(r(t),t)dB(t) µ drift
s diffusion
20How is an SDE defined? integral equation r(t)
?0t ?(r(s),s)ds ?0t ?(r(s),s)dB(s)
Take l.i.m of discrete approximation,
tj Sometimes there is a stationary
distribution, p(r)
211.3.4. The potential function approach
Gradient system µ
-(?H/?x,?H/?y)T - grad H
Steepest descent equation
µ shows the direction of movement
22Sometimes log p(r) ? -2 log H(r)
231. Meandering particle. H constant 2.
Attraction. To point a, H(r) ar-a2, O-U
½s2log r-a - dr-a , bird navigation To
region, take a nearest point in region 3.
Repulsion. From point a, H(r) r-a-2 From
region, a nearest point 4. Quadratic. H(r) ?1x
?2y ?11x2 ?12xy ?22y2
24- SDEs - approximation/simulation
- (r(ti1) r(ti))/(ti1 ti) ?(r(ti)) sZi1
- (r(ti1) r(ti))/(ti1 ti) -(?H/?x,?H/?y)T
sZi1 - Zi i.i.d. N2
-
- Data. tj,(x(tj),y(tj)), where r(t)
(x(t),y(t))T
251.4 Inference methods. Suppose µ has form µ(r)
g(r)ßT Stack (r(ti1) - r(ti))/?ti1-ti to
form Yn Stack µ(ri,ti)?ti1-ti to form Xn Stack
sZi1 to form en then Yn Xnß en Consider
sZi1 form martingale difference sequence wrt
s-field Fi generated by r(t1),,r(ti)
26Theorem A.1. Lai and Wei (1982). Suppose
supn E(enaFn-1) lt 8 a.s. for some a gt
2. Suppose limn?8 varenFn-1) s2 a.s. for
some nonstochastic s. Write X Assume that xn
Fn-1-measurable r.v. and existance of non-random
positive definite symmetric L by L matrix Bn for
which Bn-1(XnTXn)1/2?I and sup1in Bn-1xn?0
in probability.Then
(XnTXn)1/2(b-ß) ?N(0, s2I), in distribution as
n?8.Â
27CI for f(r)T ß Theorem A.2. Under the assumptions
of Theorem A.1 and lim log ?max(XnTXn)/n?0 almost
surely, one has ((f(r)(XnTXn)-1f(r)T)-1/2f(r)T
(b-ß)/sn ? N(0,1) in distribution as n?8. sn
((n-1)p)-1RSS
28Assessment. How to check for gradient system?
?Hy/?x ?Hx/?y ? Model µ of dr(t) µ(r(t),t)dt
s(r(t),t)dB(t) then estimate partials µ1y , µ2x
and compare
How to check full model? Generate synthetic
plots. Compare to the data. Neyman and Scott
(1956)
291.5 Difficulties that can arise. Excessive
gaps in data Outliers Location error
Memory Nonlinearity ...
301.6 Results for the empirical examples. 1.6.2
Perrins data, H(r) quadratic OLS estimate of H,
ignoring r1
31Tricky though, the Langevin model,
doesn't fit in directly
321.6.3 Monk seal. H(r,t) - two points of
attraction, one offshore, one onshore Potential
function quadratic C/dM(x,y) Attractor a
changes, write a(t) C keeps the animal off Molokai
33(No Transcript)
34(No Transcript)
35Synthetic journey.
361.6.4 Elk Experiment. Explanatory, x(t) 8
animals ATV days, ?t 5min for elk
37(No Transcript)
38dr(t) µ(r(t))dt ?(r(t)-x(t-t))dt sdB(t)
x(t) location of ATV at time t t time lag
39(No Transcript)
401.6.5 World Cup. H(r) ? log r ? r ?1x
?2y ?11x2 ?12xy ?22y2 Use r a0, a0
closest point of goalmouth
41(No Transcript)
42Vector field
431.6.6 Whale shark SST first -day
44 SSH
45Ocean surface Chlorophyll-a
46With H(x,y) temperature, current, chlorophyl
surface or all fit (r(ti1) r(ti))/(ti1 ti)
-(?H/?xi,?H/?yi)T sZi1
471.7 Other aspects/approaches models.
Stochastic functional differential equations
memory beyond most recent allowed Rt
denotes history r(u), -8 lt u t dr(t)
µ(Rt)dt s(Rt)dB(t) For inference
(r(ti1) - r(ti)) µ(Rti)(ti1 - ti) s v(ti1
- ti)Zi1
48Consider
When the ti are equispaced ...
49 weak convergence of approximations Levy
processes Markov chain approximation
50Summary. Flexble approach - H is scalar-valued
Argentina went down one side of the field
Perrin particle attracted to a region Monk
seal between food and safety
- inside Penguin Bank -
synthetic reasonable Elk - ATV had an effect
Whale shark temperature, current,chlorophyl
51Acknowledgements. Ager, Brown, Kie, Littnan,
Mendelssohn, Panaretos, Preisler, Spector,
Stewart , Wisdom
52Further examples and extensions Several
particles Risk of collision - space debris
tracking Control Approximation errors
Markov chain approximations Comparison
Simulation Prediction Model appraisal
Handling explanatories