Practical Cryptography in High Dimensional Tori - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Practical Cryptography in High Dimensional Tori

Description:

... Cryptography in High Dimensional Tori. Marten van Dijk1, Robert Granger2, Dan Page2, Karl Rubin3, Alice Silverberg3, Martijn Stam2, David Woodruff1 ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 25
Provided by: DavidWo48
Category:

less

Transcript and Presenter's Notes

Title: Practical Cryptography in High Dimensional Tori


1
Practical Cryptography in High Dimensional Tori
  • Marten van Dijk1, Robert Granger2, Dan Page2,
  • Karl Rubin3, Alice Silverberg3, Martijn Stam2,
  • David Woodruff1

MIT CSAIL, University of Bristol, UC Irvine
2
Outline
  • Application of Torus Cryptography
  • Goals of Torus Cryptography
  • Security
  • Efficiency
  • Space Compression
  • Time Exponentiations
  • Our Contribution
  • Implementation
  • Conclusion

3
Sample Application
Target Secret key exchange over insecure
channel Setting Cyclic group Gq µ Fpn of
order q
ga
b 2 Zq
a 2 Zq
gb
4
Outline
  • Application of Torus Cryptography
  • Goals of Torus Cryptography
  • Security
  • Efficiency
  • Space Compression
  • Time Exponentiations
  • Our Contribution
  • Implementation
  • Conclusion

5
Security
  • Setting Gq µ Fpn
  • How to choose Gq?
  • Security Cant compute gab from ga, gb (CDH)
  • Pollard ? log2 q gt 160
  • Index Calculus n log2 p gt 1024
  • Pohlig-Hellman Gq not in proper subfield

6
Security Pohlig-Hellman
  • Setting Gq µ Fpn
  • How to choose Gq?
  • Pohlig-Hellman Gq not in proper subfield

Fpn is cyclic of cardinality pn 1 ?d n
?d(p), ?d(p) is the d-th cyclotomic
polynomial. ?1(p) p-1, ?2(p) p1, ?3(p) p2
p 1, ?6(p) p2 p 1
7
Security Pohlig-Hellman
  • Setting Gq µ Fpn
  • How to choose Gq?
  • Pohlig-Hellman Gq not in proper subfield

Example Fp6 p6-1 (p-1)(p1)(p2p1)(p2-p1
)
?1(p)?2(p) ?3(p) ?6(p) ?d(p) ¼ p?(d) , where
?(d) is Euler totient function
8
Security Pohlig-Hellman
  • Setting Gq µ Fpn
  • How to choose Gq?
  • Pohlig-Hellman Gq not in proper subfield

Choose Gq µ Tn(Fp)
Lenstra If q ?n(p), q gt n, then Gq is not in
a proper subfield. Order
?n(p) subgroup is torus Tn(Fp) Other tori T1
g 2 Fpn gp-1 1 Fp , T2 g 2 Fpn
gp1 1 , Td g 2 Fpn g?d(p) 1 for d n
9
Outline
  • Application of Torus Cryptography
  • Goals of Torus Cryptography
  • Security
  • Efficiency
  • Space Compression
  • Time Exponentiations
  • Our Contribution
  • Implementation
  • Conclusion

10
Efficiency Communication
Setting Gq µ Tn(Fp) µ Fpn
  • - Represent Gq with n log2 p bits
  • - But Gq is much smaller! Cant we do
    better?
  • - We dont know how to efficiently achieve
    log2 q bits
  • - We can achieve Tn(Fp) ¼ ?(n) log2 p bits
    for some n
  • LUCLS, XTR LV,
    CEILIDH RS

11
Efficiency Communication
Setting Gq µ Tn(Fp) µ Fpn
  • - Affine space An(Fp) n-tuples (g1, , gn) 2
    (Fp)n
  • - LUC T2(Fp) A1(Fp)
  • - XTR T6(Fp) A2(Fp)
  • CEILIDH Tn(Fp) A?(n)(Fp) if and only if n is a
    product of at most two prime powers
  • If n the product of at most two prime powers,
    ?(n)/n gt 1/3 and this is achieved for n 6.

12
Efficiency Communication
Setting Gq µ Tn(Fp) µ Fpn
  • - Ideally want a map Tn(Fp) A?(n) (Fp) for all
    n
  • vdW 8 n, 9 m and a map Tn(Fp) x Am(Fp) Am
    ?(n)(Fp)
  • But I thought we wanted a different type of map

13
Efficiency Communication
Setting Gq µ Tn(Fp) µ Fpn
  • Wanted Tn(Fp) A?(n)(Fp)
  • Got Tn(Fp) x Am(Fp) Am ?(n)(Fp)
  • - Is this useful? Yes!
  • If your application has m log p extra bits E
    to transmit or store, can compute ?(g, E)

14
Efficiency Computation
  • vDW Tn(Fp) x Am Am ?(n)
  • Problem 1 m may be too large for applications
  • Problem 2 very computationally inefficient
  • vDW Ask, can computation be reduced?

15
Outline
  • Application of Torus Cryptography
  • Goals of Torus Cryptography
  • Security
  • Efficiency
  • Space Compression
  • Time Exponentiations
  • Our Contribution
  • Implementation
  • Conclusion

16
Our Contribution
  • Reduce m in the map Tn(Fp) x Am Am ?(n)
  • Better for more applications
  • More computationally efficient
  • Give the first implementation of T30(Fp) and show
    it is practical

17
Our Contribution
  • Let n 30. Our map is inspired by the equation
  • ?30(p) ?6(p)
    ?6(p5)
  • This suggests a mapping
  • T30(Fp) x T6(Fp)
    T6(Fp5)
  • We can represent T6(Fp) and T6(Fp5) using
    CEILIDH!
  • Get an almost bijection T30(Fp) x A2(Fp)
    A10(Fp)
  • Affine surplus m 2, instead of m 32 in vDW

18
Our Contribution
T30(Fp) x A2(Fp)
T30(Fp) x T6(Fp)
T6(Fp5)
A2(Fp5) A10(Fp)
19
Applications
Our map T30(Fp) x A2(Fp) A10(Fp)
  • Lets compress two elements of T30(Fp) in
    different ways
  • Using CEILIDH, takes 20 p-ary symbols
  • Using vDW, takes 48 p-ary symbols
  • Using our map, takes 8 10 18 p-ary symbols
  • Obtain 10 ciphertext size reduction in ElGamal
    variants

20
Our Contribution
  • Also have
  • T210 x A22 ! A232
  • For n 210, vDW had m 264
  • Simplicity of map greatly improves computation
  • For n 30,
  • Forward direction 1 multiplication
    CEILIDH maps
  • Reverse direction 1 exponentiation
    CEILIDH maps

21
Outline
  • Application of Torus Cryptography
  • Goals of Torus Cryptography
  • Security
  • Efficiency
  • Space Compression
  • Time Exponentiations
  • Our Contribution
  • Our Implementation
  • Conclusion

22
Parameter Selection
  • We only consider T30(Fp) µ Fp30
  • Using a Macintosh G5 dual 2.5GHz computer, we got

23
Timings
  • Timings based on log2(pL) ¼ 5 log2(pS), and Gq
    with log2 q ¼ 160
  • 2.8 GHz Pentium 4 with 1GB of memory

24
Conclusion
  • T30(Fp) crypto is practical!
  • Compression outperforms existing schemes for as
    few as 2 elements
  • The method is only slightly slower (2-3) than
    T6(Fp5) and XTR
Write a Comment
User Comments (0)
About PowerShow.com