13. Spatiotemporal Databases - PowerPoint PPT Presentation

About This Presentation
Title:

13. Spatiotemporal Databases

Description:

Spatial extent- the set of points in space that belong to an object ... Example: Plankton [0, 20] [5 t, 15 3t] [5 t, 10 2t] T. Y. X. 13 ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 22
Provided by: ych81
Learn more at: http://cse.unl.edu
Category:

less

Transcript and Presenter's Notes

Title: 13. Spatiotemporal Databases


1
13. Spatiotemporal Databases
  • Extreme Point Data Models
  • Parametric Extreme Point Data Models
  • Geometric Transformation Data Models
  • Queries

2
  • Spatiotemporal objects - have spatial and
    temporal extents
  • Spatial extent- the set of points in space
    that belong to an object
  • Temporal extent- the set of time instances
    when an object exists

3
  • 13.1 Extreme Point Data Models
  • Extreme points the endpoints of intervals and
  • the corner vertices of polygonal or polyhedral
    objects
  • Examples extreme points data models include
  • Rectangle data model and
  • Worboys data model

4
Extreme Point Data Models
  • Rectangles data model --- for each object
  • Spatial extent a set of rectangles.
  • Temporal extent a set of time intervals.

5
(No Transcript)
6
Rectangles Data Model
  • Archaeological Site (Figure 13.1)

Id X Y T
1 3,6 3,6 100,200
2 8,11 3,7 150,350
3 2,4 5,10 250,400
3 2,10 8,10 250,400
7
  • Worboys Data Model --- for each object
  • Spatial extent a set of triangles,
  • represented by corner
    vertices
  • Temporal extent a set of time intervals,
  • represented by From and To
    endpoints

8
(No Transcript)
9
Worboys Data Model
  • Park (Figure 13.2)

Id Ax Ay Bx By Cx Cy From To
Fountain 10 4 10 4 10 4 1980 1986
Road 5 10 9 6 9 6 1995 1996
Road 9 6 9 3 9 3 1995 1996
Tulip 2 3 2 7 6 3 1975 1990
Park 1 2 1 11 12 11 1974 1996

10
13.2 Parametric Extreme Point Data Models
  • Extend the extreme point data models by
    specifying the extreme points as linear,
    polynomial, or periodic functions of time
  • Examples parametric rectangles and
    parametric 2-spaghetti data models

11
  • Parametric Rectangles Data Model ---
  • for each object
  • Spatial extent a set of intervals, whose
    endpoints are represented by functions of
    time
  • (time t is the only
    parameter)
  • Temporal extent a time interval, whose
    endpoints are represented
    by From and To constants

12
  • Example Plankton

X Y T
5t, 102t 5t, 153t 0, 20
13
  • The Parametric 2-Spaghetti Data Model---
  • for each object
  • Spatial Extent set of triangles, whose corner
    vertices
  • represented as functions of time
  • Temporal Extent A constant time interval
  • Example Net

Ax Ay Bx By Cx Cy From To
3 3-t 40.5t 4-0.5t 5t 3 0 10
14
13.2.1 Periodic Parametric Data Models
  • Periodic Parametric Rectangles Data Model ---
  • Spatial Extent a set of triangles, whose corner
  • vertices are
    represented as
  • periodic functions of
    time
  • Temporal Extent Periodic intervals

15
1200 am
300 am
4-
Parking Lot
3-
500 am
2-
1-
1
2
3
16
  • Example Tide (Figure 13.6)

Ax Ay Bx By Cx Cy From To P End
1 4 1 4-t t1 4 0 2 11.5 8
1 4 1 2 3 4 2 9.5 11.5 8
1 2 3 4 3 6-t 2 3 11.5 8
1 2 1 4-t 3 6-t 2 3 11.5 8
1 2 3 4 3 3 3 8.5 11.5 8
1 2 1 1 3 3 3 8.5 11.5 8
1 1 3 3 3 6-t 3 5 11.5 8
17
13.3 Geometric Transformation Data Models
  • Generalize geometric transformations by using a
    time parameter.
  • Types of geometric transformations
    scaling, translation, linear, affine.

18
13.3 Geometric Transformation Data Models
  • Geometric Transformation -- bijection of
    d-dimensional space into itself.
  • Example
  • Affine Motion x Ax B
  • Linear Motion x Ax
  • Scaling x Ax where A is
    diagonal
  • Translation x x B
  • Identity x x

19
  • Geometric Transformation Data Model ---defines
    each spatiotemporal object as some spatial object
    together with a continuous transformation that
    produces an image of the spatial object for every
    time instant

20
13.4 Queries
  • Querying Parametric Extreme Point Databases ---
  • allow only the constraints of the type xc,
    xltc, or xgt c.
  • Example Find where and when will it snow given
  • Clouds(X, Y, T, humidity)
  • Region(X, Y, T, temperature)
  • (SELECT x, y, t
  • FROM Clouds
  • WHERE humidity gt 80)
  • INTERSECT
  • (SELECT x, y, t
  • FROM Region
  • WHERE temperature lt 32)

21
  • Example
  • Window(id, x, y, t) -- open windows on a
    computer screen, where id is the identifier, x,
    y spatial points
  • of the window, and t is the time when it is
    active.
  • Which windows are completely hidden by other
  • windows?
  • Seen(i) - Window(i, x, y, t),
  • not Window(i2,
    x, y, t2),
  • t2 gt t.
  • Hidden(i) - Window(i, x, y, t),
  • not Seen(i).
Write a Comment
User Comments (0)
About PowerShow.com