Chapter 8 Conservation of Energy EXAMPLES - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

Chapter 8 Conservation of Energy EXAMPLES

Description:

Determine the speed of the ball at y above the ground. The sum K U ... Example 8.2 Roller Coaster Speed. Using Mechanical Energy Conservation (Frictionless! ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 14
Provided by: CalSt6
Category:

less

Transcript and Presenter's Notes

Title: Chapter 8 Conservation of Energy EXAMPLES


1

Chapter 8Conservation of Energy EXAMPLES
2
Example 8.1 Free Fall(Example 8.1 Text book)
  • Determine the speed of the ball at y above the
    ground
  • The sum K U remains constant
  • At h Ui mgh Ki 0
  • At y Kf ½mvf2 Uf mgy
  • In general Conservation of Energy
  • Ki Ui Kf Uf ?
  • 0 mgh ½mvf2 mgy ?
  • Solving for vf
  • vf is independent of the mass !!!

3
Example 8.2 Roller Coaster Speed
  • Using Mechanical Energy Conservation
    (Frictionless!)
  • ½mvf2 mgyf ½mvi2 mgyi
  • Only vertical differences matter!
  • Horizontal distance doesnt matter!
  • Mass cancels!
  • Find Speed at bottom?
  • Known yi y 40m, vi 0,
  • yf 0, vf ? ?
  • 0 mgyi ½mvf2 0 ?
  • vf2 2gyi 784m2/s2 ?
  • v2 28 m/s

4
Example 8.3 Spring-Loaded Gun (Example 8.3
Text book)
  • Choose point A as the initial point and C as the
    final point
  • (A). Find the Spring Constant k ?
  • Known vA 0, yA 0 , xA yB 0.120m
  • vC 0 , yC 20m, UC mgyC , m 35.0g
  • EC EA ?
  • KC UgC UsC KA UgA UsA
  • ½mvC2 mgyC ½kxC2 ½mvA2 mgyA ½kxA2
  • ? 0 mgyC 0 0 0 ½kxA2
  • ? ½kxA2 mgyC ? k 2mgyc/xA2
  • 2(0.0350kg)(9.80m/s2)(20.0m)/(0.120m)2
  • k 953 N/m

yC
yB
yA
5
Example 8.3 Spring-Loaded Gun, final
  • (B). Find vB ?
  • Use EB EA
  • KB UgB USB KA UgA USA
  • ½mvB2 mgyB ½kxB2
  • ½mvA2 mgyA ½kxA2 ?
  • ½mvB2 mgyB 0 0 0 ½kxA2
  • vB2 (kxA2 2mgyB)/m
  • vB2 388.1m2/s2 ?
  • vB 19.7 m/s

yC
yB
yA
6
Example 8.4 Ramp with Friction(Example 8.7 Text
book)
  • Problem the 3.0 kg crate slides down the rough
    ramp. If vi 0, yi 0.5m , yf 0
    Æ’k 5N
  • (A). Find speed at bottom vf
  • At the top Ei Ki Ugi 0 mgyi
  • At the bottom Ef Kf Ugf ½ m vf2 0
  • Recall If friction acts within an isolated
    system
  • ?Emech ?K ?U Ef Ei Æ’k d ?
  • ½ m vf2 mgyi Æ’k d
  • Solve for vf

7
Example 8.4 Ramp with Friction, final
  • (B). How far does the crate slide on the
    horizontal floor if it continues to experience
    the same friction force Æ’k 5N
  • The total ?Emech is only kinetic (the potential
    energy of the system remains fixed)
  • ?Emech ?K Kf Ki Æ’k d
  • Where Kf ½ m vf2 0
  • Ki ½ m vi2 9.68 J
  • Then Kf Ki 0 9.68 J (5N)d ?
  • d (9.68/5) 1.94 m

8
Example 8.5 Motion on a Curve Track
(Frictionless)
  • A child of mass m 20 kg starts sliding from
    rest. Frictionless!
  • Find speed v at the bottom.
  • ?Emech ?K ?U
  • ?Emech (Kf Ki) (Uf Ui) 0
  • (½mvf2 0) (0 mgh) 0
  • ½mvf2 mgh 0 ?
  • Same result as the child is falling vertically
    trough a distance h!

9
Example 8.5 Motion on a Curve Track (Friction)
  • If a kinetic friction of Æ’k 2N acts on the
    child and the length of the curve track is 50 m,
    find speed v at the bottom.
  • If friction acts within an isolated system
  • ?Emech ?K ?U Æ’k d
  • ?Emech (Kf Ki) (Uf Ui) Æ’k d
  • ?Emech ½mvf2 mgh Æ’k d
  • ?Emech ½(20) vf2 20(10)(2) 100J

10
Example 8.6 Spring-Mass Collision(Example 8.8
Text book)
  • Frictionless!
  • K Us Emech remains constant
  • (A). Assuming m 0.80kg vA 1.2m/s
    k 50N/m
  • Find maximum compression of the spring after
    collision (xmax)
  • EC EA ? KC UsC KA UsA
  • ½mvC2 ½kxmax2 ½mvA2 ½kxA2
  • 0 ½kxmax2 ½mvA2 0 ?

11
Example 8.6 Spring-Mass Collision, final
  • (B). If friction is present, the energy decreases
    by
  • ?Emech Æ’kd
  • Assuming ?k 0.50 m 0.80kg vA 1.2m/s k
    50N/m
  • Find maximum compression of the spring after
    collision xC
  • ?Emech Æ’k xC ?knxC ?kmgxC ?
  • ?Emech 3.92xC (1)
  • Using ?Emech Ef Ei
  • ?Emech (Kf Uf) (Ki Ui)
  • ?Emech 0 ½kxC2 ½mvA2 0
  • ?Emech 25xC2 0.576 (2)
  • Taking (1) (2) 25xC2 0.576 3.92xC
  • Solving the quadratic equation for xC
  • xC 0.092m lt 0.15m (frictionless)
  • Expected! Since friction retards the motion of
    the system
  • xC 0.25m Does not apply since the mass must
    be to the right of the origin.

12
Example 8.7 Connected Blocks in Motion(Example
8.9 Text book)
  • The system consists of the two blocks, the
    spring, and Earth. Gravitational and potential
    energies are involved
  • System is released from rest when spring is
    unstretched.
  • Mass m2 falls a distance h before coming to rest.
  • The kinetic energy is zero if our initial and
    final configurations are at rest ?K 0
  • Find ?k

13
Example 8.7 Connected Blocks in Motion, final
  • Block 2 undergoes a change in gravitational
    potential energy
  • The spring undergoes a change in elastic
    potential energy
  • ?Emech ?K ?Ug ?US ?Ug ?US Ugf
    Ugf Usf Usi
  • ?Emech 0 m2gh ½kh2 0
  • ?Emech m2gh ½kh2 (1)
  • If friction is present, the energy decreases by
  • ?Emech Æ’kh ?km1gh (2)
  • Taking (1) (2) m2gh ½kh2 ?k m1gh
  • ?k m1gh m2gh ½kh2 ?
Write a Comment
User Comments (0)
About PowerShow.com