Title: Chapter 8 Conservation of Energy EXAMPLES
1Chapter 8Conservation of Energy EXAMPLES
2Example 8.1 Free Fall(Example 8.1 Text book)
- Determine the speed of the ball at y above the
ground - The sum K U remains constant
- At h Ui mgh Ki 0
- At y Kf ½mvf2 Uf mgy
- In general Conservation of Energy
- Ki Ui Kf Uf ?
- 0 mgh ½mvf2 mgy ?
- Solving for vf
- vf is independent of the mass !!!
3Example 8.2 Roller Coaster Speed
- Using Mechanical Energy Conservation
(Frictionless!) - ½mvf2 mgyf ½mvi2 mgyi
- Only vertical differences matter!
- Horizontal distance doesnt matter!
- Mass cancels!
- Find Speed at bottom?
- Known yi y 40m, vi 0,
- yf 0, vf ? ?
- 0 mgyi ½mvf2 0 ?
- vf2 2gyi 784m2/s2 ?
- v2 28 m/s
4Example 8.3 Spring-Loaded Gun (Example 8.3
Text book)
- Choose point A as the initial point and C as the
final point - (A). Find the Spring Constant k ?
- Known vA 0, yA 0 , xA yB 0.120m
- vC 0 , yC 20m, UC mgyC , m 35.0g
- EC EA ?
- KC UgC UsC KA UgA UsA
- ½mvC2 mgyC ½kxC2 ½mvA2 mgyA ½kxA2
- ? 0 mgyC 0 0 0 ½kxA2
- ? ½kxA2 mgyC ? k 2mgyc/xA2
- 2(0.0350kg)(9.80m/s2)(20.0m)/(0.120m)2
- k 953 N/m
yC
yB
yA
5Example 8.3 Spring-Loaded Gun, final
- (B). Find vB ?
- Use EB EA
- KB UgB USB KA UgA USA
- ½mvB2 mgyB ½kxB2
- ½mvA2 mgyA ½kxA2 ?
- ½mvB2 mgyB 0 0 0 ½kxA2
- vB2 (kxA2 2mgyB)/m
- vB2 388.1m2/s2 ?
- vB 19.7 m/s
yC
yB
yA
6Example 8.4 Ramp with Friction(Example 8.7 Text
book)
- Problem the 3.0 kg crate slides down the rough
ramp. If vi 0, yi 0.5m , yf 0
Æ’k 5N - (A). Find speed at bottom vf
- At the top Ei Ki Ugi 0 mgyi
- At the bottom Ef Kf Ugf ½ m vf2 0
- Recall If friction acts within an isolated
system - ?Emech ?K ?U Ef Ei Æ’k d ?
- ½ m vf2 mgyi ƒk d
- Solve for vf
7Example 8.4 Ramp with Friction, final
- (B). How far does the crate slide on the
horizontal floor if it continues to experience
the same friction force Æ’k 5N - The total ?Emech is only kinetic (the potential
energy of the system remains fixed) - ?Emech ?K Kf Ki Æ’k d
- Where Kf ½ m vf2 0
- Ki ½ m vi2 9.68 J
- Then Kf Ki 0 9.68 J (5N)d ?
- d (9.68/5) 1.94 m
-
8Example 8.5 Motion on a Curve Track
(Frictionless)
- A child of mass m 20 kg starts sliding from
rest. Frictionless! - Find speed v at the bottom.
- ?Emech ?K ?U
- ?Emech (Kf Ki) (Uf Ui) 0
- (½mvf2 0) (0 mgh) 0
- ½mvf2 mgh 0 ?
- Same result as the child is falling vertically
trough a distance h!
9Example 8.5 Motion on a Curve Track (Friction)
- If a kinetic friction of Æ’k 2N acts on the
child and the length of the curve track is 50 m,
find speed v at the bottom. - If friction acts within an isolated system
- ?Emech ?K ?U Æ’k d
- ?Emech (Kf Ki) (Uf Ui) Æ’k d
- ?Emech ½mvf2 mgh ƒk d
- ?Emech ½(20) vf2 20(10)(2) 100J
10Example 8.6 Spring-Mass Collision(Example 8.8
Text book)
- Frictionless!
- K Us Emech remains constant
- (A). Assuming m 0.80kg vA 1.2m/s
k 50N/m - Find maximum compression of the spring after
collision (xmax) - EC EA ? KC UsC KA UsA
- ½mvC2 ½kxmax2 ½mvA2 ½kxA2
- 0 ½kxmax2 ½mvA2 0 ?
11Example 8.6 Spring-Mass Collision, final
- (B). If friction is present, the energy decreases
by - ?Emech Æ’kd
- Assuming ?k 0.50 m 0.80kg vA 1.2m/s k
50N/m - Find maximum compression of the spring after
collision xC - ?Emech Æ’k xC ?knxC ?kmgxC ?
- ?Emech 3.92xC (1)
- Using ?Emech Ef Ei
- ?Emech (Kf Uf) (Ki Ui)
- ?Emech 0 ½kxC2 ½mvA2 0
- ?Emech 25xC2 0.576 (2)
- Taking (1) (2) 25xC2 0.576 3.92xC
- Solving the quadratic equation for xC
- xC 0.092m lt 0.15m (frictionless)
- Expected! Since friction retards the motion of
the system - xC 0.25m Does not apply since the mass must
be to the right of the origin.
12Example 8.7 Connected Blocks in Motion(Example
8.9 Text book)
- The system consists of the two blocks, the
spring, and Earth. Gravitational and potential
energies are involved - System is released from rest when spring is
unstretched. - Mass m2 falls a distance h before coming to rest.
- The kinetic energy is zero if our initial and
final configurations are at rest ?K 0 - Find ?k
13Example 8.7 Connected Blocks in Motion, final
- Block 2 undergoes a change in gravitational
potential energy - The spring undergoes a change in elastic
potential energy - ?Emech ?K ?Ug ?US ?Ug ?US Ugf
Ugf Usf Usi - ?Emech 0 m2gh ½kh2 0
- ?Emech m2gh ½kh2 (1)
- If friction is present, the energy decreases by
- ?Emech Æ’kh ?km1gh (2)
- Taking (1) (2) m2gh ½kh2 ?k m1gh
- ?k m1gh m2gh ½kh2 ?
-
-