Title: IMPROVED BREAST CANCER
1IMPROVED BREAST CANCER DIAGNOSIS AND PROGNOSIS BY
COMUTATIONAL MODELING AND IMAGE ANALYSIS David
E. Axelrod J.-A. Chapman, W.A. Christens-Barry,
H.L. Lickley, N.A. Miller, J. Qian, L. Sontag,
B. Subramanian, Y. Yuan NCI, NJCCR, Busch
2BREAST CANCER
GOAL Clinical data ? Models ? Patient prognosis
OUTLINE Breast cancer stages in situ and
invasive Clinical data Models Prediction Image
analysis Prognosis
3NORMAL BREAST ANATOMY
Skarin, A.T. Breast Cancer I Slide Atlas of
Diagnostic Oncology, Bristol-Myers Squibb
Oncology
4 BREAST CANCER
Skarin, A.T. Breast Cancer I Slide Atlas of
Diagnostic Oncology, Bristol-Myers Squibb
Oncology
5BREAST TUMOR PROGRESSION Conventional
View
Normal ? Ductal Carcinoma In Situ
? Invasive Ductal Carcinoma ? Metastasis
( DCIS)
(IDC)
(M)
6BREAST TUMOR PROGRESSION Conventional
View
Normal ? Ductal Carcinoma In Situ
? Invasive Ductal Carcinoma ? Metastasis
( DCIS) (IDC)
(M)
Normal? Atypical Hyperplasia? DCIS1? DCIS2?
DCIS3? IDC1? IDC2 ? IDC3 ? M
(AH)
7IMPORTANCE OF GRADING DUCTAL CARCINOMA IN SITU
220,000 Breast Cancers / year 20
DCIS 32 recurrence free DCIS
outcome 68 recur (DCIS or IDC) DCIS
heterogeneity 25 intermediate grade 50
mixed grades
8 PROGNOSIS BY PATHOLOGIST Miller,
N.A. et al. The Breast Journal 7 292-302 (2001)
Nuclear grade No. Recurrence Recurrence Worst
DCIS Invasive Grade 1 1
0 0 Grade 2 35 4 6 Grade
3 52 13 5 p 0.18 p
0.73 Conclude Nuclear grade is not
prognostic.
9BREAST TUMOR PROGRESSION Conventional
View
Normal ? Ductal Carcinoma In Situ
? Invasive Ductal Carcinoma ? Metastasis
( DCIS) (IDC)
(M)
Normal? Atypical Hyperplasia? DCIS1? DCIS2?
DCIS3? IDC1? IDC2 ? IDC3 ? M
(AH)
10EXPECTATION
DCIS1? DCIS2? DCIS3? IDC1? IDC2 ? IDC3
CLINICAL OBSERVATIONS
Van Nuys Classification
Holland Classification IDC
DCIS IDC
DCIS 1 2 3 1 2 3 1 90.10 26.73 11.88 1 65.66
53.54 12.12 2 55.45 87.13 55.45 2 27.27 117.17
57.58 3 3.96 25.74 141.58 3 4.04 23.23 137.38
Sum of observations of Gupta, Cadman and Leong,
normalized to 498.
11BREAST TUMOR PROGRESSION Conventional
View
Normal ? Ductal Carcinoma In Situ
? Invasive Ductal Carcinoma ? Metastasis
( DCIS) (IDC)
(M)
Normal? Atypical Hyperplasia? DCIS1? DCIS2?
DCIS3? IDC1? IDC2 ? IDC3 ? M
(AH)
12Mommers et al. J. Pathol. 194 327-333 (2001)
13Buerger et al. J. Pathol. 187 396-402 (1999)
14" Unless you can express your knowledge with
numbers, your knowledge is meager and
unsatisfactory." William Thompson
Lord Kelvin 1824-1907
Smithsonian Institution of Washington, 1857
15 B. Subramanian and D.E. Axelrod
Progression of Heterogeneous Breast
Tumors J. Theoret. Biol. 210
107-119 (2001) Purpose Pathways for tumor
progression (compartment models) Transition
rates between compartments Data Co-occurrence
frequencies of DCIS and IDC Method Genetic
algorithm (GA) search for transition
rates Result GA cant reproduce data with
models Conclusion GA and/or models not
adequate
16 PROBLEMS
- Genetic algorithm
- limitations, stuck in local minimum
- Pathway models
- not describe the biological situation
- Polluted data
- combined data from five labs
- different criteria to classify grades
17 PROBLEMS SOLUTIONS
- Genetic algorithm 1. Directed search
- limitations, stuck in local minimum
seed Nelder-Mead simplex - Pathway models 2. New pathway
- not describe the biological situation
relax assumption DCIS -gt IDC - Polluted data 3. Combine similar data
- combined data from five labs
combine data from three labs - different criteria to classify grades
same criteria to classify grades
18 CLINICAL OBSERVATIONS
Van Nuys Classification
Holland Classification IDC
DCIS IDC
DCIS 1 2 3 1 2 3 1 90.10 26.73 11.88 1 65.66
53.54 12.12 2 55.45 87.13 55.45 2 27.27 117.17
57.58 3 3.96 25.74 141.58 3 4.04 23.23 137.38
Sum of observations of Gupta, Cadman and Leong,
normalized to 498.
19PATHWAYS
Linear
Nonlinear
Branched
20DIFFERENTIAL EQUATIONS
21BRANCHED PATHWAY
22PATHWAY SIMULATIONS
Linear IDC
DCIS 1 2 3 1 94.62 49.80 0 2 0 114.54 74.70 3 0 0
164.34
Non-linear IDC
DCIS 1 2 3 1 60.00 0 0 2 84.00 120.00 78.00 3 0 0
156.00
Branched IDC
DCIS 1 2 3 1 103.48 0 0 2 64.68 103.48 71.14 3 0
0 155.22
23PATHWAY SIMULATIONS
Linear IDC
DCIS 1 2 3 1 94.62 49.80 0 2 0 114.54 74.70 3 0 0
164.34
Non-linear IDC
DCIS 1 2 3 1 60.00 0 0 2 84.00 120.00 78.00 3 0 0
156.00
Observed - Van Nuys Classification IDC DCIS 1 2
3 1 90.10 26.73 11.88 2 55.45 87.13 55.45 3 3.96 2
5.74 141.58
Branched IDC
DCIS 1 2 3 1 103.48 0 0 2 64.68 103.48 71.14 3 0
0 155.22
24PATHWAYS
Linear
Nonlinear
Branched
Parallel
25PARALLEL PATHWAY
Common Progenitor
26PARALLEL PATHWAY
p (0.642)
11 12 13 21 22 23 31 32
33
27PARALLEL PATHWAY
p (0.642)
p (0.326)
11 12 13 21 22 23 31 32
33
11 12 13 21 22 23 31 32
33
28PARALLEL PATHWAY
p (0.032)
p (0.642)
p (0.326)
11 12 13 21 22 23 31 32
33
11 12 13 21 22 23 31 32
33
11 12 13 21 22 23 31 32
33
29PATHWAY SIMULATIONS
Linear IDC
DCIS 1 2 3 1 94.62 49.80 0 2 0 114.54 74.70 3 0 0
164.34
Non-linear IDC
DCIS 1 2 3 1 60.00 0 0 2 84.00 120.00 78.00 3 0 0
156.00
Branched IDC
DCIS 1 2 3 1 103.48 0 0 2 0 103.48 71.14 3 0 0 15
5.22
Parallel IDC
DCIS 1 2 3 1 106.57 40.59 7.97 2 40.59 106.57 40.
59 3 7.97 40.59 106.57
30 COMPARISON OF RESULTS
Clinical Observation Model
Simulation Van Nuys Classification
Parallel Model
IDC DCIS IDC
DCIS 1 2 3 1 2 3 1 90.10 26.73 11.88 1 106.5
7 40.59 7.97 2 55.45 87.13 55.45 2 40.59 106.57
40.59 3 3.96 25.74 141.58 3 7.97 40.59 106.57
31(No Transcript)
32 BREAST TUMOR PROGRESSION
Conventional View - Linear Progression
Normal
Ductal Carcinoma In Situ
Invasive Ductal Carcinoma
Metastasis
New View - Parallel Progression
Ductal Carcinoma In Situ
Common Progenitor
Metastasis
Normal
Invasive Ductal Carcinoma
33PARALLEL PATHWAY
Common Progenitor
L. Sontag and D. E. Axelrod Evaluation of
pathways for progression of heterogeneous breast
tumors J. Theoret. Biol. 232 179-189 (2005)
34Slides 34-45 are excluded. They include data on
diagnosis and prognosis of breast ductal
carcinoma in situ by image analysis which has
been submitted for publication.
35CONCLUSION
GOAL Clinical data ? Models ? Patient
prognosis
OUTCOME Clinical data ? Models ? Improved
Patient prognosis
36(No Transcript)