A Proposal for XRF Beamline at SESAME - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

A Proposal for XRF Beamline at SESAME

Description:

?Phase Two: An end station for imaging (X-ray Microscope) (Application 3) ... Synchrotron Radiation X-Ray Fluorescence. X-Ray Imaging. ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 53
Provided by: awnibh
Category:

less

Transcript and Presenter's Notes

Title: A Proposal for XRF Beamline at SESAME


1
A Proposal for XRF Beamlineat SESAME
  • Part 1
  • Beamline Design

2
List of Collaborators
3
MAXE GroupMaterial Analysis by X-ray Emission
1. Beamline requirements 2. Scientific Background
Applications 2-1. Studies of Atomic Decay
Parameters 2-2. Synchrotron radiation x-ray
fluorescence analysis 2-3. Elemental or
chemical mapping of materials 3. Beamline
Design 3-1. The Front End 3-2. Beamline
Optics 4. End Stations 5. Cost Estimates 6.
Ancillary Requirements 7. Modes of Operation
4
Beamline Requirements
  • Resolution 2 x 10-4
  • Harmonics Higher order harmonics must be at
    least two orders of magnitude less intense than
    the fundamental.
  • Flux The flux should be greater than
  • 1013 photons/s/0.1 BW.
  • Energy Band Width (BW) 2-30 keV.

5
Scientific Background Applications
  • Study Some of the fundamental parameters
  • ? Photoionization cross section.
  • ? Fluorescence Yield.
  • ? Coster-Kronig Transition Probabilities.
  • ? Radiative transition rates.

6
  • SR X-Ray Fluorescence Analysis (SRIXE )
  • ? Use Polarized beam at selected beam energies.
  • ? Perform elemental analysis of the bulk of the
    sample taking advantage of reduced background.
  • ? Need modest flux to avoid pile-up problem.

7
  • Elemental or chemical mapping of materials
  • ? Need Special collimators and mirrors to
  • focus the beam.
  • ? Need scanning facility for either the
  • sample or the beam.
  • ? Costly (Second Phase)

8
Experimental Design
  • Front End of the Beamline
  • Beam Optics of the Beamline
  • End Stations

9
(No Transcript)
10
Front End of Spring-8 XRF Beamline

11
(No Transcript)
12
Optics and Beam Transport of Spring-8 XRF Beamline
13
Double Monochromator System

G. Falkenberg, O. Clauss, A. Swiderski and Th.
Tschentscher, X-Ray Spectrom. 2001 30 170-173
14
Effective Bandwidth ?E/E

T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
15
Energy Resolution

T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
16
Diffraction Width Divergence
T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
17
Energy Range
T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
18
End Stations
  • Two end stations are needed as follows
  • Phase One An end station for the examination of
    atomic decay parameters (Application 1) and the
    quantitative analysis using SRIXE (Application
    2).
  • ?Phase Two An end station for imaging (X-ray
    Microscope) (Application 3).

19
Cost Estimates
  • Hardware Requirements
  • Synchrotron
  • Insertion device 1,200K US
  • X-Ray Beamline and Optics 1,000K US
  • Vacuum Beamline 0,500K US
  • X-ray Hutches 0,200K US
  • Computers for Control 0,100K US
  • Total Capital Cost 3,000K US
  • Maintenance and spares 250K US
  • Replacement of aging capital items 250K US
  • Total Recurrent Cost (per y) 0,500K
    US

20
  • Hardware Requirements
  • End Stations
  • X-ray Fluorescence Set-up 70K US
  • Experimental Chamber 130K US
  • XRF Microscope (To be defined later)
  • Total Cost of End Stations 200K US
  • Software Requirements
  • License agreement with appropriate providers of
    software
  • Total recurrent cost 50K US
  • Ancillary Requirements
  • Target Preparation Facility
  • Liquid Nitrogen Plant (25 liters/hr)
  • Total recurrent cost 200K US

21
Total Cost of XRF Beamline
  • Total Capital Cost 3,200K US
  • Total Recurrent Cost 800K US
  • Grand Total 4,000K US
  • Supporting facilities
  • Target Preparation Laboratory
  • Liquid Nitrogen Plant

22
End of Part 1
23
Part 2Applications
  • Selective photoionization Method Using
    Synchrotron Radiation.
  • Synchrotron Radiation X-Ray Fluorescence.
  • X-Ray Imaging.

24
Selective Photoionization Method Using
Synchrotron Radiation
Study fundamental parameters in X-Ray
Fluorescence.
sLi Photoionization cross sections (i1,2,3)
?i Fluorescence yields (i1,2,3) fij
Coster-Kronig Transition Probabilities
between subshell i and subshell j
(i,j1,2,3)(jgti) Fij LiXj Radiative Transition
Rates from subshell Xj to subshell Li ,
XM,N,O, j1,2,3,4,5,6 for major lines.
25
  • What is the situation for these parameters?
  • For K-shell, agreement between theory and
  • experiment is very good.
  • For L-subshells, more refined measurements
  • need to be done.

26
Fluorescence Yield ?K
27
Fluorescence Yield ?1
28
Fluorescence Yield ?2
29
Fluorescence Yield ?3
30
Coster-Kronig Transition f12
31
Coster-Kronig Transition f13
32
Coster-Kronig Transition f23
33
sphoto versus E for Yb
34
Lab for different elements
35
(No Transcript)
36
?i Fluorescence yields (i1,2,3)
37
Selective Photoionization Method
Element Yb
38
Simulation of Yb L3-subshell
39
Simulation of Yb L2-subshell
40
Simulation of Yb L1-subshell
41
Simulation of Yb L2L3-subshells
L3 L? Lß2,15 Ll L
?5
L2 Lß1 L?1 L? L?5
42
Simulation of Yb L-shell
43
Number of Parameters to be determined
Counting 3x2 for sLi 3 for ?i 3
for fij 15 for Fij
27 parameters in total
44
Methodology

U. Werner and W. Jitschin, Phys. Rev. A 1988
38-8 4009-4018. R. Stotzel, U. Werner, M.
Sarkar and W. Jitschin, J. Phys. B At. Mol.
Opt. Phys. 1992 25 2295-2307. Raul A.
Barrea, Carlos A. Perez and Hector J. Sanchez, J.
Phys. B At. Mol. Opt. Phys. 2002 35
3167-3178.
45
Selective Photoionization Method
Element Yb
46
Look at total intensity of individual L-subshells
  • I(L3) ? ?3s3 EE3
  • I(L3) ? ?3(s3f23s2) EE2
  • I(L3) ? ?3s3f23s2s1(f13f12.f23) EE1
  • I(L2) ? ?2s2 EE2
  • I(L2) ? ?2(s2f12s1) EE1
  • I(L1) ? ?1s1 EE1

47
  • The basic equation for quantitative XRF is
  • ILi(E)I(E) ? e(Li) C sLi(E) T(ELi, E)

48
  • For X-ray production cross section, we have
  • sL?(E)sL1(E)f13f12.f23sL2(E)f23sL3(E)
  • ?3(F3?1F3?2)
  • sL?l(E)sL1(E) f12sL2(E)?2 F2?1 sL1(E)
  • ?1(F1?3F1?4)
  • sL?1(E)sL1(E) f12sL2(E)?2 F2?1
  • where L?lL?1L ?3L?4

49
  • sL1(E), sL2(E) and sL3(E) are known or they
    can be replaced by two parameters each according
    to the formula
  • s a E-b
  • The intensity of a particular line is
    normalized relative to the K? from a properly
    chosen element.
  • IK?(E)I(E) ? e(EK?) Ce sK?(E) T(EK?, E)
  • where sK?(E) sK(E) ?K FK?

50
  • We have the normalized intensity of a
    particular x-ray line belonging to Li as
  • Applying this formula to the three basic
    lines ILa, ILßl and IL?1 we have

51
  • Now a?, b?, c?, a?l, b?l, a?1, b?1 are known in
    terms of f12, f13, f23, ?1, ?2, and ?3, then,
  • All six parameters can be determined

52
Thank you
Write a Comment
User Comments (0)
About PowerShow.com