Title: A Proposal for XRF Beamline at SESAME
1A Proposal for XRF Beamlineat SESAME
2List of Collaborators
3MAXE GroupMaterial Analysis by X-ray Emission
1. Beamline requirements 2. Scientific Background
Applications 2-1. Studies of Atomic Decay
Parameters 2-2. Synchrotron radiation x-ray
fluorescence analysis 2-3. Elemental or
chemical mapping of materials 3. Beamline
Design 3-1. The Front End 3-2. Beamline
Optics 4. End Stations 5. Cost Estimates 6.
Ancillary Requirements 7. Modes of Operation
4Beamline Requirements
- Resolution 2 x 10-4
- Harmonics Higher order harmonics must be at
least two orders of magnitude less intense than
the fundamental. - Flux The flux should be greater than
- 1013 photons/s/0.1 BW.
- Energy Band Width (BW) 2-30 keV.
5Scientific Background Applications
- Study Some of the fundamental parameters
- ? Photoionization cross section.
- ? Fluorescence Yield.
- ? Coster-Kronig Transition Probabilities.
- ? Radiative transition rates.
6- SR X-Ray Fluorescence Analysis (SRIXE )
- ? Use Polarized beam at selected beam energies.
- ? Perform elemental analysis of the bulk of the
sample taking advantage of reduced background. - ? Need modest flux to avoid pile-up problem.
7- Elemental or chemical mapping of materials
- ? Need Special collimators and mirrors to
- focus the beam.
- ? Need scanning facility for either the
- sample or the beam.
- ? Costly (Second Phase)
8Experimental Design
- Front End of the Beamline
- Beam Optics of the Beamline
- End Stations
9(No Transcript)
10Front End of Spring-8 XRF Beamline
11(No Transcript)
12Optics and Beam Transport of Spring-8 XRF Beamline
13Double Monochromator System
G. Falkenberg, O. Clauss, A. Swiderski and Th.
Tschentscher, X-Ray Spectrom. 2001 30 170-173
14Effective Bandwidth ?E/E
T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
15Energy Resolution
T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
16Diffraction Width Divergence
T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
17Energy Range
T. Ishikawa, JSPS Asian Science Seminar
(JASS02), Al-Balqa Applied University,
Jordan, Oct. 19-28, 2002.
18End Stations
- Two end stations are needed as follows
- Phase One An end station for the examination of
atomic decay parameters (Application 1) and the
quantitative analysis using SRIXE (Application
2). - ?Phase Two An end station for imaging (X-ray
Microscope) (Application 3).
19Cost Estimates
- Hardware Requirements
- Synchrotron
- Insertion device 1,200K US
- X-Ray Beamline and Optics 1,000K US
- Vacuum Beamline 0,500K US
- X-ray Hutches 0,200K US
- Computers for Control 0,100K US
- Total Capital Cost 3,000K US
- Maintenance and spares 250K US
- Replacement of aging capital items 250K US
- Total Recurrent Cost (per y) 0,500K
US
20- Hardware Requirements
- End Stations
- X-ray Fluorescence Set-up 70K US
- Experimental Chamber 130K US
- XRF Microscope (To be defined later)
- Total Cost of End Stations 200K US
- Software Requirements
- License agreement with appropriate providers of
software - Total recurrent cost 50K US
- Ancillary Requirements
- Target Preparation Facility
- Liquid Nitrogen Plant (25 liters/hr)
- Total recurrent cost 200K US
21Total Cost of XRF Beamline
- Total Capital Cost 3,200K US
- Total Recurrent Cost 800K US
- Grand Total 4,000K US
- Supporting facilities
- Target Preparation Laboratory
- Liquid Nitrogen Plant
22End of Part 1
23Part 2Applications
- Selective photoionization Method Using
Synchrotron Radiation. - Synchrotron Radiation X-Ray Fluorescence.
- X-Ray Imaging.
24Selective Photoionization Method Using
Synchrotron Radiation
Study fundamental parameters in X-Ray
Fluorescence.
sLi Photoionization cross sections (i1,2,3)
?i Fluorescence yields (i1,2,3) fij
Coster-Kronig Transition Probabilities
between subshell i and subshell j
(i,j1,2,3)(jgti) Fij LiXj Radiative Transition
Rates from subshell Xj to subshell Li ,
XM,N,O, j1,2,3,4,5,6 for major lines.
25- What is the situation for these parameters?
- For K-shell, agreement between theory and
- experiment is very good.
- For L-subshells, more refined measurements
- need to be done.
26Fluorescence Yield ?K
27Fluorescence Yield ?1
28Fluorescence Yield ?2
29Fluorescence Yield ?3
30Coster-Kronig Transition f12
31Coster-Kronig Transition f13
32Coster-Kronig Transition f23
33sphoto versus E for Yb
34Lab for different elements
35(No Transcript)
36?i Fluorescence yields (i1,2,3)
37Selective Photoionization Method
Element Yb
38Simulation of Yb L3-subshell
39Simulation of Yb L2-subshell
40Simulation of Yb L1-subshell
41Simulation of Yb L2L3-subshells
L3 L? Lß2,15 Ll L
?5
L2 Lß1 L?1 L? L?5
42Simulation of Yb L-shell
43 Number of Parameters to be determined
Counting 3x2 for sLi 3 for ?i 3
for fij 15 for Fij
27 parameters in total
44Methodology
U. Werner and W. Jitschin, Phys. Rev. A 1988
38-8 4009-4018. R. Stotzel, U. Werner, M.
Sarkar and W. Jitschin, J. Phys. B At. Mol.
Opt. Phys. 1992 25 2295-2307. Raul A.
Barrea, Carlos A. Perez and Hector J. Sanchez, J.
Phys. B At. Mol. Opt. Phys. 2002 35
3167-3178.
45Selective Photoionization Method
Element Yb
46Look at total intensity of individual L-subshells
- I(L3) ? ?3s3 EE3
- I(L3) ? ?3(s3f23s2) EE2
- I(L3) ? ?3s3f23s2s1(f13f12.f23) EE1
- I(L2) ? ?2s2 EE2
- I(L2) ? ?2(s2f12s1) EE1
- I(L1) ? ?1s1 EE1
47- The basic equation for quantitative XRF is
- ILi(E)I(E) ? e(Li) C sLi(E) T(ELi, E)
48- For X-ray production cross section, we have
- sL?(E)sL1(E)f13f12.f23sL2(E)f23sL3(E)
- ?3(F3?1F3?2)
- sL?l(E)sL1(E) f12sL2(E)?2 F2?1 sL1(E)
- ?1(F1?3F1?4)
- sL?1(E)sL1(E) f12sL2(E)?2 F2?1
- where L?lL?1L ?3L?4
49- sL1(E), sL2(E) and sL3(E) are known or they
can be replaced by two parameters each according
to the formula - s a E-b
- The intensity of a particular line is
normalized relative to the K? from a properly
chosen element. - IK?(E)I(E) ? e(EK?) Ce sK?(E) T(EK?, E)
-
- where sK?(E) sK(E) ?K FK?
50- We have the normalized intensity of a
particular x-ray line belonging to Li as - Applying this formula to the three basic
lines ILa, ILßl and IL?1 we have
51- Now a?, b?, c?, a?l, b?l, a?1, b?1 are known in
terms of f12, f13, f23, ?1, ?2, and ?3, then,
- All six parameters can be determined
52Thank you