Quantitative phase estimation with a bright field microscope - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Quantitative phase estimation with a bright field microscope

Description:

Sri Rama Prasanna Pavani, Ariel Libertun, Sharon King, and ... M = magnification. Trapezoidal numerical integration. s. x. w = 7 m. s = 1 m. n1 = 1.5. n2 = 1 ... – PowerPoint PPT presentation

Number of Views:153
Avg rating:3.0/5.0
Slides: 18
Provided by: ecesCo
Category:

less

Transcript and Presenter's Notes

Title: Quantitative phase estimation with a bright field microscope


1
Quantitative phase estimation with a bright field
microscope
Sri Rama Prasanna Pavani, Ariel Libertun, Sharon
King, and Carol Cogswell Micro Optical Imaging
Systems Laboratory, ECE, University of Colorado
at Boulder http//moisl.colorado.edu
Frontiers in Optics 9/18/2007
2
Phase imaging What? How?
  • Transparent (phase) objects modulate only the
    phase of light
  • Convert phase modulations into detectable
    intensity modulations
  • Quantitative phase for weak phase objects
  • No phase wrapping
  • Halo and shading-off
  • Only for thin objects
  • Quantitative phase after reconstruction
  • No phase wrapping
  • Polarization sensitive
  • Only for thin objects
  • Multiple images
  • Quantitative phase after reconstruction
  • Thick phase objects
  • Single image
  • Vibration sensitive
  • Phase wrapping
  • No quantitative phase

3
Our method
  • Amplitude mask in the field diaphragm
  • Pattern is imaged on the sample
  • Phase object distorts the pattern
  • Record the distorted pattern
  • Analytical formula calculates phase

Vs
0.2 0.1
(mm)
0.4 0.2
0 0.2 0.4
(mm)
(mm)
4
Our method 1D
  • Analytically relate deformation to the optical
    path length
  • Consider a 1D phase object p(x)
  • Ray R from point A, after refraction, appears as
    if it originated from B
  • Deformation t(x) is the distance between A and B

Normal
Tangent
n2
p(x)
n1
A
B
t(x)
Pavani et al, Quantitative structured-illuminatio
n phase microscopy, submitted to Applied Optics,
June 07 Pavani et al, Structured-illumination
quantitative phase microscopy, CMB4, COSI 2007
5
Our method 2D
1D deformations
After 1D integrations
C1 C2 . . CN
Quantitative Phase
2D deformation
K1 K2 KN
Pavani et al, Quantitative structured-illuminatio
n phase microscopy, submitted to Applied Optics,
June 07
6
Simulation
X 100
18 9 0
5 0 -5
Calculated Phase
Quadratic phase
50 25 0
50 25 0
200 100
200 100
After 1D integrations
1D deformations
X 100
18 9 0
5 0 -5
0 100 200
0 100 200
Error
8 4 0 -4 -8
(nm)
Peak error is 5 orders less than peak phase
Error
0 100 200
7
Experimental Results
X,Y Deformations
Dot shift
Original pattern
3 0 -3
360 180
0 240 480
Deformed pattern
3 0 -4
360 180
16.54
0 240 480
Quantitative phase
40 30 20 10 0
Profilometer Our method
Object Drop of optical cement
360 180
480 240 0
8
Spatial Resolution
  • Size and the spacing between dots
  • Dots sampling the object must obey Nyquist
  • Resolution enhancement by shifting

d
s
M
M
shift right
shift down
shift diagonally




N
N



  • If dot size diffraction limited spot size,
    quantitative phase imaging with the same
    resolution as a bright field image is possible

9
Spatial Resolution
  • Size and the spacing between dots
  • Dots sampling the object must obey Nyquist
  • Resolution enhancement by shifting

d
s
M
M
shift right
shift down
shift diagonally




N
N



  • If dot size diffraction limited spot size,
    quantitative phase imaging with the same
    resolution as a bright field image is possible
  • Full resolution single image phase imaging with
    multi-colored dots

10
Phase resolution
Dot shift
  • Smallest detectable change in path length
  • Minimum deformation

w detector pixel width M magnification
  • Trapezoidal numerical integration

s
x
x
Example
lt
w 7µm s 1µm
n1 1.5 n2 1
M 100x NA 0.9
Depth of field 753nm
11
Conclusion
  • Described wide field, full resolution
    quantitative phase imaging in a bright field
    microscope
  • Phase is calculated from deformation using an
    analytical formula
  • Conservative calculations with a 100x objective
    predict a phase resolution of 155nm

12
Acknowledgements
  • Prof. Rafael Piestun
  • Prof. Gregory Beylkin
  • Vaibhav Khire

CDMOptics PhD Fellowship
National Science Foundation Grant No. 0455408
13
References
  • J. W. Goodman, Introduction to Fourier Optics,
    (Roberts Company, 2005)
  • M Pluta, Advanced Light Microscopy, vol 2
    Specialised Methods, (Elsevier, 1989)
  • M. R. Arnison, K. G. Larkin, C. J. R. Sheppard,
    N. I. Smith, C. J. Cogswell, Linear phase
    imaging using differential interference contrast
    microscopy Journal of Microscopy 214 (1), 712
    (2004)
  • C. Preza, "Rotational-diversity phase estimation
    from differential-interference-contrast
    microscopy images," J. Opt. Soc. Am. A 17,
    415-424 (2000)
  • Sharon V. King, Ariel R. Libertun, Chrysanthe
    Preza, and Carol J. Cogswell, Calibration of a
    phase-shifting DIC microscope for quantitative
    phase imaging, Proc. SPIE 6443, 64430M (2007)
  • E. Cuche, F. Bevilacqua, and C. Depeursinge,
    Digital holography for quantitative
    phase-contrast imaging, Opt. Lett. 24, 291-293
    (1999)
  • P. Marquet, B. Rappaz, P. J. Magistretti, E.
    Cuche, Y. Emery, T. Colomb, and C. Depeursinge,
    Digital holographic microscopy a noninvasive
    contrast imaging technique allowing quantitative
    visualization of living cells with subwavelength
    axial accuracy, Opt. Lett. 30, 468-470 (2005)
  • M. Born and E. Wolf, Principles of Optics, ed. 7,
    (Cambridge University Press, Cambridge, U.K.,
    1999).
  • A. C. Kak, M. Slaney, Principles of Computerized
    Tomographic Imaging, (IEEE Press, New York, NY,
    1988)
  • A. C. Sullivan, Department of Physics, University
    of Colorado, Campus Box 390, Boulder, CO 80309,
    USA and R. McLeod are preparing a manuscript to
    be called Tomographic reconstruction of weak
    index structures in volume photopolymers.
  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson
    WG, Chang W, Hee MR, Flotte T, Gregory K,
    Puliafito CA, et al., Optical coherence
    tomography, Science1991 Nov 22254(5035)1178-81.
  • A. F. Fercher, C. K. Hitzenberger, Optical
    coherence tomography, Chapter 4 in Progress in
    Optics 44, Elsevier Science B.V. (2002)
  • A. F. Fercher, W. Drexler, C. K. Hitzenberger and
    T. Lasser, Optical coherence tomography -
    principles and applications, Rep. Prog. Phys. 66
    239303 (2003)
  • M. R. Ayres and R. R. McLeod, "Scanning
    transmission microscopy using a
    position-sensitive detector," Appl. Opt. 45,
    8410-8418 (2006)
  • Barone-Nugent, E., Barty, A. Nugent, K.
    Quantitative phase-amplitude microscopy I
    optical microscopy, J. Microsc. 206, 194203
    (2002).
  • J. Hartmann, "Bemerkungen uber den Bau und die
    Justirung von Spektrographen," Z. Instrumentenkd.
    20, 47 (1900).
  • I. Ghozeil, Hartmann and other screen tests, in
    Optical Shop Testing, D. Malacara, second edition
    Wiley, New York, 1992, pp. 367396.
  • R. V. Shack and B. C. Platt, Production and use
    of a lenticular Hartmann screen, J. Opt. Soc.
    Am. 61, 656 (1971).
  • V. Srinivasan, H. C. Liu, and M. Halioua,
    Automated phase-measuring profilometry of 3-D
    diffuse objects, Appl. Opt. 23, 3105- (1984)

14
Applications and Future work
  • Industrial inspection, biological imaging
  • Extracting information from axial deformation
  • Extending the depth of field of the system
  • Fabrication of an amplitude mask with higher
    spatial resolution

15
Our method How?
1 Dimensional analysis
(from geometry)
(Snells law,
)
(Taylor expansion)
C 2 (C2 C1)
16
Our method How?
M
2 Dimensional analysis
N
Apply 1D solution along x and y to obtain
and
P2
17
Metrology - Cubic phase mask
120 80 40 0
360 180
480 240 0
Deformation
Quantitative OPL profile
140 70 0
Cubic phase mask
360 180
480 240 0
Deformation
Quantitative OPL profile
Write a Comment
User Comments (0)
About PowerShow.com