Title: Biomedical Signal Processing
1Biomedical Signal Processing
- EEG Segmentation
-
- Joint Time-Frequency Analysis
- Gina Caetano
- 14/10/2004
2Introduction
- EEG Segmentation
- Spectral error measure
- - Periodogram approach (nonparametric)
- - Whitening approach (parametric)
- 2. Joint Time-Frequency Analysis
- - Linear, nonparametric methods
- - Nonlinear, nonparametric methods
- - Parametric methods
3EEG Segmentation Spectral Error Measure
- Whitening Approach
- - Parametric
- - AR model (reference window)
- - Linear prediction (test window)
- - Dissimilarity measure ?2(n)
4EEG segmentation
- AR model of order p describes signal in reference
window - Power spectrum of e(n)
- Quadratic spectral error
- measure
- Time domain Asymmetric
5EEG segmentation
- AR model of order p describes signal in reference
window - Simpler Asymmetric
- ad hoc reverse test
- Symmetric
-
- Simulations prediction-based method associated
with lower false alarm rate than
correlation-method.
6Joint Time-Frequency Analysis
- When in time different frequencies of signal are
present
- Linear, nonparametric methods
- - Linear filtering operation
- - Short-time Fourier transform
- - Wavelet transform
- Nonlinear, nonparametric methods
- - Wigner-Ville Distribution (ambiguity function)
- - General Time-Frequency distributions Cohens
class
- Parametric methods
- - Statistical model with time-varying parameters
- - AR model parameter estimation (slow changes in
time)
7Joint Time-Frequency Analysis
- When in time different frequencies of signal are
present
- Linear, nonparametric methods
- - Linear filtering operation
- - Short-time Fourier transform
- - Wavelet transform
- Nonlinear, nonparametric methods
- - Wigner-Ville Distribution (ambiguity function)
- - General Time-Frequency distributions Cohens
class
- Parametric methods
- - Statistical model with time-varying parameters
- - AR model parameter estimation (slow changes in
time)
8Short-Time Fourier Transform
- 2D modified Fourier transform
- ?(t) length resolution in time and frequency
9Short-Time Fourier Transform
10Short-Time Fourier Transform
EEG
Spectrogram
Diastolic blood pressure
11Short-Time Fourier Transform
1 s Hamming window
2 s Hamming window
0.5 s Hamming window
12Joint Time-Frequency Analysis
- Linear, nonparametric methods
- - Linear filtering operation
- - Short-time Fourier transform
- - Wavelet transform
- Nonlinear, nonparametric methods
- - Wigner-Ville Distribution (ambiguity function)
- - General Time-Frequency distributions Cohens
class
- Parametric methods
- - Statistical model with time-varying parameters
- - AR model parameter estimation (slow changes in
time)
13Wigner-Ville Distribution (WVD)
14Wigner-Ville Distribution (WVD)
Analytic signal
Analytic Ambiguity Function
15Wigner-Ville Distribution (WVD)
- WVD Continuous-time definition
Modulated Gaussian Signal
Spectrogram
WVD
16Wigner-Ville Distribution (WVD)
Two-components Signal
Spectrogram
Wigner-Ville distribution
17Joint Time-Frequency Analysis
- Linear, nonparametric methods
- - Linear filtering operation
- - Short-time Fourier transform
- - Wavelet transform
- Nonlinear, nonparametric methods
- - Wigner-Ville Distribution (ambiguity function)
- - General Time-Frequency distributions Cohens
class
- Parametric methods
- - Statistical model with time-varying parameters
- - AR model parameter estimation (slow changes in
time)
18Cohens class
- General time-frequency distribution
Wigner-Ville distribution
pseudoWigner-Ville distribution
Spectrogram
Choi-Williams distribution
19Cohens class
- Choi-Williams distribution
Two-components Signal
Wigner-Ville distribution
Choi-William distribution
20Cohens class
- Choi-Williams distribution
EEG
Spectrogram
Wigner-Ville distribution
Choi-William distribution
21Joint Time-Frequency Analysis
- Linear, nonparametric methods
- - Linear filtering operation
- - Short-time Fourier transform
- - Wavelet transform
- Nonlinear, nonparametric methods
- - Wigner-Ville Distribution (ambiguity function)
- - General Time-Frequency distributions Cohens
class
- Parametric methods
- - Statistical model with time-varying parameters
- - AR model parameter estimation (slow changes in
time)
22Model-based analysis of slowly varying signals
- Parametric model of signal
- Time-varying AR model
- Slow temporal variations
- Time-varying noise
- Two adaptive methods
- Minimization of prediction error
- LMS minimizes forward prediction error variance
- Gradient Adaptive Lattice minimizes forward and
backward prediction error variances
23Model-based analysis of slowly varying signals
- LSM Algorithm (AR model, p8)