Title: Information on Atmospheric Aerosol in OMI Measurements
1Information on Atmospheric Aerosol in OMI
Measurements
Ben Veihelmann, Pieternel Levelt, Piet Stammes
and Pepijn Veefkind Royal Netherlands
Meteorological Institute (KNMI)
2Overview
- Multi-wavelength aerosol algorithm
- Principal Component Analysis (PCA)
- Degrees of Freedom of Signal (DFS)
- Distinguish Aerosol Types
- Separate Aerosol Parameters
- Surface albedo
- Clouds
3Multi-Wavelength Approach
- ? Best fitting aerosol model
- ? Information on Type, AOD, SSA, Size, Height?
- ? Surface reflectivity? Clouds?
Reflectance
Wavelength (nm)
4Height Information from 477 nm ?
Effective cross section
O2-O2 Vertical
DistributionO2-O2
pressure2
Height
10-46 cm5/molec2
Aerosol layer
O2-O2 Density
Wavelength (nm)
O2-O2 Density
5Principal Component Analysis
- Rlm Reflectance( l, Measurement )
- Covariance matrix RTR PTD P
- Principal components Pkl pk(l)
- Decompose R
-
- K Number of components necessary to
reconstruct - R with an error e lt enoise
-
- Number of Degrees of Freedom of Signal
- Set of K Weights W for a given measurement
K k1
Rlm S Wkm Pkl e
6Synthetic Data for Reflectance R (l,model)
- Aerosol models (250)
- Biomass burning, Desert dust, Weakly
absorbing - - Aerosol Optical Depth (AOD) ... 0 5
- - Refractive Index various m n
ik(l) - gSingle Scattering Albedo (SSA) 0.8
1 - - Size Distribution various
bimodal - - Height of layer 1-5 km
- Cloud models
- Geometries .. 8 m, 8 m0, 11 Df, ? 700
- Surface albedo (l) ... ocean, soil,
vegetation
7Principal Components
K k1
Rlm S Wkm Pkl e
------- Principal component 1 ------- Principal
component 2 ------- Principal component 3 -------
Principal component 4
8Degrees of Freedom of SignalSurface albedo
K k1
Rlm S Wkm Pkl e
- Soil/Veget.
- m0 0.6
- 0.9
- Df 20?
------- Soil ------- Vegetation ------- Ocean
9Degrees of Freedom od SignalWavelength Band
Selection
K k1
Rlm S Wkm Pkl e
- Soil/Veget.
- m0 0.6
- 0.9
- Df 20?
- SNR1000
10- Soil/Veget.
- m0 0.6
- 0.9
- Df 20?
- Biomass Burning x Desert Dust Weakly
Absorbing o Water Cloud D Ice Cloud
Lines connect points with const. ref. index,
height, size AOD 0, 0.1, 0.5 1.0, 2.5, 5.0
Weight 3
Weight 2
Weight 1
11Distinguish Aerosol Types
- Biomass Burning x Desert Dust Weakly
Absorbing
12Distinguish Aerosol Types AOD 0.5
- Biomass Burning x Desert Dust Weakly
Absorbing
AOD 5.0
2.5
1.0
0.5
0.1
0.1
0.5
1.0
5.0
2.5
13Separate AOD and SSA
- Biomass Burning x Desert Dust Weakly
Absorbing
AOD
SSA
14Surface Albedo Error /- 0.01
AOD lt 0.5
15Surface Albedo Error /- 0.01
AOD lt 0.5
16Distinguish Clouds 3 DFS
- Biomass Burning x Desert Dust Weakly
Absorbing o Water Cloud D Ice Cloud
17Conclusions
- Aerosol multi-wavelength algorithm 20 bands 331 -
500 nm - Signal has 2 to 4 degrees of freedom
- number insensitive to surface (ocean, soil,
vegetation) - 477 nm band adds information
- O2-O2 absorption appears in 3rd PC and higher
- Distinguish Aerosol Types
- desert dust / weakly absorbing
- some ambiguity biomass burning
- Separate AOD and SSA for absorbing aerosol
- Surface albedo error minor impact for ADO 0.5
- Clouds can be distingiushed if number of DFS 3
18Backup Material
19Surface Albedo Error /- 0.01
impact minor for AOD 0.5
0.5
0.5
20(No Transcript)
21Degrees of Freedom of Signal Geometry
K k1
Rlm S Wkm Pkl e
Soil/Veget. m0 0.6 SNR1000
22Outlook
- Non-spherical desert dust aerosol model
- Spheroidal shape approximation
- Validation
- AERONET ground based sunphotometer measurements
- Other satellite instruments PARASOL
23Principal Component Analysis
- P transforms R to coordinate system with
principal axes - Number of dimensions can be reduced to K
Wkm Sl Pkl Rlm
Rlm Reflect.(l,model)
Wkm Weight (k,model)
K k1
Rlm S Wkm Pkl e
24Nominal Retrieval PCA-Retrieval
LUT
decompose in PC
Rmodel(l) 250 models
Wmodel(k) 250 models
decompose in PC
AOT-interpol
AOT-interpol
Rmeas(l)
Wmeas(k)
- minimize
- Sl (Rmeas-Rmodel)2
- minimize
- Sk (Wmeas- Wmodel)2