Information on Atmospheric Aerosol in OMI Measurements - PowerPoint PPT Presentation

About This Presentation
Title:

Information on Atmospheric Aerosol in OMI Measurements

Description:

EOS Aura Science and Validation Team Meeting. 11-15 September 2006 ... Surface albedo error: minor impact for ADO 0.5. Clouds can be distingiushed if number of DFS 3 ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 25
Provided by: Veef2
Category:

less

Transcript and Presenter's Notes

Title: Information on Atmospheric Aerosol in OMI Measurements


1
Information on Atmospheric Aerosol in OMI
Measurements
Ben Veihelmann, Pieternel Levelt, Piet Stammes
and Pepijn Veefkind Royal Netherlands
Meteorological Institute (KNMI)
2
Overview
  • Multi-wavelength aerosol algorithm
  • Principal Component Analysis (PCA)
  • Degrees of Freedom of Signal (DFS)
  • Distinguish Aerosol Types
  • Separate Aerosol Parameters
  • Surface albedo
  • Clouds

3
Multi-Wavelength Approach
  • ? Best fitting aerosol model
  • ? Information on Type, AOD, SSA, Size, Height?
  • ? Surface reflectivity? Clouds?

Reflectance
Wavelength (nm)
4
Height Information from 477 nm ?
Effective cross section
O2-O2 Vertical
DistributionO2-O2
pressure2
Height
10-46 cm5/molec2
Aerosol layer
O2-O2 Density
Wavelength (nm)
O2-O2 Density
5
Principal Component Analysis
  • Rlm Reflectance( l, Measurement )
  • Covariance matrix RTR PTD P
  • Principal components Pkl pk(l)
  • Decompose R
  • K Number of components necessary to
    reconstruct
  • R with an error e lt enoise
  • Number of Degrees of Freedom of Signal
  • Set of K Weights W for a given measurement

K k1
Rlm S Wkm Pkl e
6
Synthetic Data for Reflectance R (l,model)
  • Aerosol models (250)
  • Biomass burning, Desert dust, Weakly
    absorbing
  • - Aerosol Optical Depth (AOD) ... 0 5
  • - Refractive Index various m n
    ik(l)
  • gSingle Scattering Albedo (SSA) 0.8
    1
  • - Size Distribution various
    bimodal
  • - Height of layer 1-5 km
  • Cloud models
  • Geometries .. 8 m, 8 m0, 11 Df, ? 700
  • Surface albedo (l) ... ocean, soil,
    vegetation

7
Principal Components
K k1
Rlm S Wkm Pkl e
  • m0 0.6
  • 0.9
  • Df 20?

------- Principal component 1 ------- Principal
component 2 ------- Principal component 3 -------
Principal component 4
8
Degrees of Freedom of SignalSurface albedo
K k1
Rlm S Wkm Pkl e
  • Soil/Veget.
  • m0 0.6
  • 0.9
  • Df 20?

------- Soil ------- Vegetation ------- Ocean
9
Degrees of Freedom od SignalWavelength Band
Selection
K k1
Rlm S Wkm Pkl e
  • Soil/Veget.
  • m0 0.6
  • 0.9
  • Df 20?
  • SNR1000

10
  • Soil/Veget.
  • m0 0.6
  • 0.9
  • Df 20?

- Biomass Burning x Desert Dust Weakly
Absorbing o Water Cloud D Ice Cloud
Lines connect points with const. ref. index,
height, size AOD 0, 0.1, 0.5 1.0, 2.5, 5.0
Weight 3
Weight 2
Weight 1
11
Distinguish Aerosol Types
- Biomass Burning x Desert Dust Weakly
Absorbing
12
Distinguish Aerosol Types AOD 0.5
- Biomass Burning x Desert Dust Weakly
Absorbing
AOD 5.0
2.5
1.0
0.5
0.1
0.1
0.5
1.0
5.0
2.5
13
Separate AOD and SSA
- Biomass Burning x Desert Dust Weakly
Absorbing
AOD
SSA
14
Surface Albedo Error /- 0.01
AOD lt 0.5
15
Surface Albedo Error /- 0.01
AOD lt 0.5
16
Distinguish Clouds 3 DFS
- Biomass Burning x Desert Dust Weakly
Absorbing o Water Cloud D Ice Cloud
17
Conclusions
  • Aerosol multi-wavelength algorithm 20 bands 331 -
    500 nm
  • Signal has 2 to 4 degrees of freedom
  • number insensitive to surface (ocean, soil,
    vegetation)
  • 477 nm band adds information
  • O2-O2 absorption appears in 3rd PC and higher
  • Distinguish Aerosol Types
  • desert dust / weakly absorbing
  • some ambiguity biomass burning
  • Separate AOD and SSA for absorbing aerosol
  • Surface albedo error minor impact for ADO 0.5
  • Clouds can be distingiushed if number of DFS 3

18
Backup Material
19
Surface Albedo Error /- 0.01
impact minor for AOD 0.5
0.5
0.5
20
(No Transcript)
21
Degrees of Freedom of Signal Geometry
K k1
Rlm S Wkm Pkl e
Soil/Veget. m0 0.6 SNR1000
22
Outlook
  • Non-spherical desert dust aerosol model
  • Spheroidal shape approximation
  • Validation
  • AERONET ground based sunphotometer measurements
  • Other satellite instruments PARASOL

23
Principal Component Analysis
  • P transforms R to coordinate system with
    principal axes
  • Number of dimensions can be reduced to K

Wkm Sl Pkl Rlm
Rlm Reflect.(l,model)
Wkm Weight (k,model)
K k1
Rlm S Wkm Pkl e
24
Nominal Retrieval PCA-Retrieval
LUT
decompose in PC
Rmodel(l) 250 models
Wmodel(k) 250 models
decompose in PC
AOT-interpol
AOT-interpol
Rmeas(l)
Wmeas(k)
  • minimize
  • Sl (Rmeas-Rmodel)2
  • minimize
  • Sk (Wmeas- Wmodel)2
Write a Comment
User Comments (0)
About PowerShow.com