Title: Introduction to Quantum Phase Transition
1Introduction to Quantum Phase Transition
Condensed Matter dpt SCES group
Emanuele Dalla Torre
- Student Seminar June 12th 2006
2Introduction
- What happens at zero Temperature?
- ??????? ???????, ??? ???????
- Outline
- From Classical
- to Quantum
- My Master Thesis
??? ????, ?????? ??? (?????)
3Classical - example
- Look for stable state minimizes free energy
(G) for given intrinsic parameters
vapor ?? ice (sublimation)
4Classical - order
- Two different phases
- Ordered phase ? crystal (ice)
- Disordered phase ? gas (vapor)
5Classical - order
- Order parameter long range order
- (f.e. direction of maximal concentration)
- Crystal ? finite (vector)
- Gas ? zero
- Spontaneous Symmetry breaking (crystal)
- Environment ? rotation symmetry O(3)
- Stable state ? no rotation symmetry
6Classical - fluctuations
- Crystal rise temperature (intrinsic param.)
- ? phase transition (order param.)
- Thermal fluctuations increase ? mean fluctuations
(dx) reach the order of lattice constant (d) ?
crystal melts - Lindemann criterion
7Classical pressure
- Another intrinsic parameter
- pressure ? concentration ? inter-atomic distance
- Sublimation temperature is determined by the
pressure - ? two independent parameters ? we can draw a
phase diagram
high pressure high concentration
low pressure low concentration
8Classical phase diagram
- T Temperature (x-axis), P Pressure (y-axis)
- ? which is the stable state?
- When we study the phase diagram we can find
other unexpected phases liquid (water)
LL, Statistical Mechanics
9Classical - summary
- Stable state
- Ordered phase / Disorder phase
- Order parameter
- Thermal fluctuations
- Pressure
- Phase diagram
10Quantum - example
- Example Spin-1 chain (one dimensional)
- We look for the ground state minimizes the
energy (GE-ST ? this is the stable state for
zero T)
11Quantum - order
- Ordered phase ? Anti-Ferromagnetic (AF)
- Disordered phase ? Mott insulator
A. Auerbach, Interacting Electrons and Quantum
Magnetism (1994)
12Quantum - order
- AF Order parameter
- AF ? constant (complex number)
- MOTT? zero
- Spontaneous Symmetry Breaking SU(2)
- (direction of the first spin)
In reality power low
13Quantum - fluctuations
- If we choose Sz direction, we cannot exactly
define Sx - ? fluctuations (hopping term)
- Temperature (parameterize fluctuations)
S.Sachdev, Quantum Phase Transition (1999)
14Quantum phase diagram
- Another parameter
- ? concentration of non zero spin
- Spin-1 Phase diagram
- (Neel Crystal,
- Mott Gas,
- Haldane Liquid)
Mott
AF
1/Thop
H. Tasaki, PRL,66(6) (1991)
15Quantum phase diagram
- Haldane phase hidden order
- 1 Spin up / zero(es) / 1 spin down / zero(es) /
. - String Order Parameter like AF order, but skips
zeros
16Master Thesis
- From spin-1 to bosons
- Methods
- Analytical Results (Mean Field, RG, Symmetries)
- Direct calculations (Density Matrix
Renormalization Group) - Experiments with ultra cold atoms
T.D. Kuhner, S.R. White, H. Monien PRB 61(18)
(2000)
17Master Thesis
- ultra-cold atoms in periodic lattice
- Interaction atoms light (intensity)
- Superposition of opposite laser beam ? periodic
potential - Tunneling hopping
- On site interaction
18Thank you!
?????????? ??????? ?????????  ??????? ???????
??? ???????
- God
- My wife, my family
- dr. Ehud Altman and Erez Berg, prof. Moti Heiblum