Interface Logic for KIVA3V - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Interface Logic for KIVA3V

Description:

Dissipation. Inlet Boundary. Inlet Velocity at Nodes. Inlet Scalars at ... Scalars (pressure, temperature, species, turbulent kinetic energy and dissipation) ... – PowerPoint PPT presentation

Number of Views:18
Avg rating:3.0/5.0
Slides: 34
Provided by: csPu
Category:

less

Transcript and Presenter's Notes

Title: Interface Logic for KIVA3V


1
Interface Logic for KIVA-3V
GASTURBNLAB
  • Ke Su and Chenn Q. Zhou
  • Department of Engineering
  • Purdue University Calumet

2
Outline
  • Simulation of combustion flows
  • Grid structure
  • Numerical scheme
  • Code basics relating to boundary conditions
  • Data storage structure

3
V4 P4 T4 M4
Secondary Channel
Fuel Nozzle
V3 P3 T3 M3
Gas Flow to Turbine
Diffuser
Air Flow from Compressor
Liner
Secondary Channel
A Typical Combustor
4
Two Approaches for Combustor Simulation
  • Single domain
  • All components in combustor, including diffuser,
    secondary channels, and liner
  • Separate domains
  • Diffuser and secondary channel domain
  • No chemical reactions, no particle phase
  • Combustion domain, i.e., combustor liner

5
Single Domain Simulation
  • Advantage
  • More accurate boundaries
  • Real time transient simulation
  • No interface needed in computation
  • Disadvantage
  • More requirements for memory and speed due to
    more grids
  • Coupling of secondary and combustion flows
  • Unnecessary equations for diffuser and secondary
    flow domain

6
Single Computational Domain
Inlet boundary
Outlet boundary
Solid wall
Inlet
Outlet
Solid wall
7
Separate Domain Simulation
  • Advantage
  • Lower requirements for computer
  • Exact equations for each domain
  • No technical challenges
  • Disadvantage
  • Lower accuracy due to more boundary assumptions
  • Interface between domains
  • Lower accuracy for transient simulation

8
Diffuer and Secondary Flow Domain
Inlet boundary
Outlet boundary
Solid wall
Outlet
Inlet
Solid wall
9
Combustion Flow Domain
Inlet boundary
Outlet boundary
Solid wall
Inlet
Outlet
Solid wall
10
A Grid of Combustion Flow
A sector of 30 deg span of the combustor
11
Grid for Combustion Flow
Solid wall
Inlet boundary
Outlet boundary
Solid wall
Periodic boundary
Periodic boundary
12
Field Variables
  • Vector (velocity)
  • stored at nodes

6
7
5
8
2
3
1
4
  • Scalars (pressure, temperature, species, etc.)
  • stored at cell center
  • constant over the cell

13
Node Odering
  • Six neighbor indices of I4 establish complete
    connectivity

K
6
7
TOP I8TAB(I4)
J
5
8
I
DERRIERE I3TAB(I4)
2
3
1
4
LEFT IMTAB(I4)
RIGHT I1TAB(I4)
(I4)
FRONT JMTAB(I4)
BOTTOM KMTAB(I4)
14
Global Grid Numbering
  • For zone n IIII (j-1)NI(n)
    (k-1)NI(n)NJ(n)
  • Global IJKIII ? NI(n-1)NJ(n-1)NK(
    n-1)

I1,NI(n)
K1,NK(n)
J1,NJ(n)
15
Numerical Scheme
  • Liquid phase (Phase A)
  • Lagrangian calculation
  • Gas phase (Phase B and C)
  • Arbitrary Lagrangian-Eulerian method
  • Phase B Lagrangian calculation
  • Phase C Eulerian calculation
  • Ability of moving coordinates for IC engine
  • Interaction of liquid phase and gas phase

16
Liquid Phase (Phase A)
  • Lagrangian method
  • Tracking single particles in computational domain
  • Solving contributions of particles to mass,
    momentum and energy equations
  • Governing equations
  • Momentum equation
  • Energy equation

17
Gas Phase (Phase B and C)
  • Arbitrary Lagrangian-Eulerian method
  • Phase B
  • Freezing convection, solving diffusion with
    computational cells moving with fluid.
  • Phase C
  • Freezing diffusion, solving convective transport
    associated with moving computational mesh, and
    rezoning flow field to new mesh
  • Governing equations
  • Continuity equation
  • Momentum equations
  • Energy equation
  • Turbulence equations
  • Species equations

18
Marching Forward in Time
  • Separate procedures for each step forward in time
  • Lagrangian calculation of liquid phase (Phase A)
  • Lagrangian calculation of flow field (Phase B)
  • Mesh moves with the material (not for gas
    turbine application) no convection is across
    cell boundary.
  • Convection calculation of flow field (Phase C)
  • Flow field is rezoned onto the new mesh,
    convection is solved.
  • Time step determination
  • Time step must satisfy the Courant condition
    ?tlt ?x/Ur

19
Types of Boundary Conditions
  • Inlet boundary
  • Outlet boundary
  • Solid wall boundary
  • Periodic boundary
  • Boundary conditions for particle phase

20
Inlet Boundary
  • Variables given values
  • Vector (velocity)
  • Scalars (pressure, temperature, species, etc.)
  • Variables for turbulence
  • Turbulent kinetic energy
  • Dissipation

21
Inlet Boundary
Inlet Velocity at Nodes
Inlet Scalars at Centers of Cells
qin
qin
qin
qin
qin
qin
22
Outlet Boundary
  • Variable given value
  • Pressure
  • Variables with zero derivatives
  • Velocity
  • Scalars (pressure, temperature, species,
    turbulent kinetic energy and dissipation)

23
Outlet Boundary
Outlet Pressure
Velocity and Scalars at Outlet
Outlet of Domain 1
qout
qout
qout
qout
qout
qout
Pressure from Domain 2
qout
qout
qout
qout
qout
qout
Domain 1
kNK(n)
kNK(n)-1
kNK(n)
24
Inlet/Outlet Boundary Ordering
  • Cell Numbering

Node Numbering
?y
I1TAB(10)
I1TAB(20)
I1TAB(5)
I1TAB(15)
I1TAB(I3TAB(20))
5
10
15
20
15
20
5
10
I3TAB(20)
4
14
19
9
9
14
19
4
I3TAB(19)
3
8
13
18
8
13
18
3
x
I3TAB(18)
7
12
17
2
7
12
17
2
I3TAB(17)
1
6
11
16
?x
11
16
1
6
I3TAB(16)
y
25
Inlet/Outlet Interface
  • If node numbers of both domain at interface are
    not consistent, interpolations are needed.

Inlet Boundary Domain 2
5
Outlet Boundary Domain 1
10
3
15
20
4
6
Inflow to Domain 2
9
14
3
19
8
2
13
Outflow from Domain 1
5
18
2
7
12
1
17
1
6
4
x
11
16
y
26
Inlet/Outlet Interface
  • Cell Numbering at Interface

Inlet Boundary Domain 2
5
10
5
Outlet Boundary Domain 1
10
15
20
15
4
20
9
4
Inflow to Domain 2
9
14
3
19
14
3
19
8
8
13
18
13
2
Outflow from Domain 1
18
2
7
12
7
12
17
1
17
6
1
11
6
x
11
16
16
y
27
Solid Wall
  • Velocity boundary
  • Slip boundary (Gas velocity is set equal to the
    wall velocity)
  • Non-slip boundary (Normal gas velocity is set
    equal to the normal wall velocity)
  • Temperature boundary
  • Adiabatic boundary (Wall heat flux is set to
    equal to zero)
  • Fixed temperature boundary (Wall heat flux is the
    function of flow properties)

28
Boundary Conditions for Liquid Phase
  • Liquid phase is solved using Lagrangian method,
    therefore, boundary conditions for liquid
    droplets are also the initial conditions.
  • Vector (velocity)
  • Scalars (droplet temperature, size, etc.)

29
Initial Conditions
  • Liquid phase
  • Initial conditions for liquid droplets are also
    the boundary conditions.
  • Gas phase
  • Initial values of variables velocity,
    temperature, pressure, turbulence, and species,
    etc.
  • Ignition
  • Ignition energy and ignitor locations.

30
KIVA-3V Flowchart
START
Setup Initial and Boundary Conditions
New step
Solution of Liquid Phase
Solution of Gas Phase
No
Check Step Setting
Yes
End
31
Input and Output
  • Reading input data file
  • Generating grids
  • Specifying boundary nodes
  • Outputting grid boundary file

Mesh Generation K3PREP
IPREP
ITAPE17
  • Reading grid boundary file
  • Reading operating condition file
  • Solution time-marching
  • Outputting result file

Main Program KIVA3
ITAPE5
ITAPE9
  • Reading result file
  • Display graphic results

Post Processor TECPLOT
32
Data Storage Structure
  • All variables (vector and scalars) transferred
    through common blocks and included in subroutines
  • Preprocessor
  • Comprep.i
  • Main Program
  • Comkiva.i Comfuel.i
  • Data stored as follows
  • q(ijk),
  • where ijk iii ? NI(n)NJ(n)NK(n)
  • iii i (j-1)NI(n-1)
    (k-1)NI(n-1)NJ(n-1)
  • i 1, NI(n) j 1, NJ(n) k1,NK(n)
  • n is the zone number

33
Example
  • Grid file OTAPE17
  • i41,iverts
  • i4,x(i4),y(i4),z(i4),fv(i4),idface(i4)
  • i1tab(i4),i3tab(i4),i4,i8tab(i4),f(i4),bcl(i4),bcf
    (i4),bcb(i4),idreg(i4)
  • Output file OTAPE9
  • (f(n),fv(n),x(n),y(n),z(n),u(n),v(n),w(n),p(n),ro
    (n),vol(n),temp(n),amu(n),
  • tke(n),eps(n),sie(n),n1,nverts)
    ((spd(n,isp),n1,nverts),mw(isp),(fam(isp,nk),nk1
    ,nrkidsp(isp),isp1,nsp)
  • (i1tab(n),i3tab(n),i8tab(n),imtab(n),jmtab(n),kmt
    ab(n),bcl(n),bcf(n),bcb(n),
  • idreg(n),n1,nverts)
  • (iperf(n),iperd(n),n1,iper)
  • (xp(n),yp(n),zp(n),i4p(n),radp(n),partn(n),up(n),
    vp(n),wp(n),tp(n),i4mom(n),
  • n1,np)
Write a Comment
User Comments (0)
About PowerShow.com