Title: The Algebra of Functions
1Section 10.1
The Algebra of Functions
2Section 10.1Exercise 1
Chapter 10
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8Section 10.1Exercise 3
Chapter 10
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13Section 10.1Exercise 4
Chapter 10
14(No Transcript)
15(No Transcript)
16(No Transcript)
17OBJECTIVES
18OBJECTIVES
19OBJECTIVES
20OBJECTIVES
21DEFINITION
OPERATIONS WITH FUNCTIONS
22DEFINITION
COMPOSITE FUNCTION
If Æ’ and g are functions
23Section 10.2
Inverse Functions
24OBJECTIVES
25OBJECTIVES
26OBJECTIVES
27OBJECTIVES
28DEFINITION
INVERSE OF A FUNCTION
The relation obtained by reversing the order of x
and y.
29PROCEDURE
FINDING THE EQUATION OF AN INVERSE FUNCTION
- Interchange the roles of x and y.
- Solve for y.
30DEFINITION
If y Æ’(x) is one-to-one, the inverse of Æ’ is
also a function, denoted by y Æ’ 1(x).
31Section 10.2Exercise 6
Chapter 10
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36Section 10.2Exercise 8
Chapter 10
37The inverse is not a function.
38Section 10.3
Exponential Functions
39OBJECTIVES
40OBJECTIVES
41OBJECTIVES
42DEFINITION
EXPONENTIAL FUNCTION
A function defined for all real values of x by
43DEFINITION
INCREASING AND DECREASING FUNCTIONS
Increasing rises left to right. Decreasing
falls left to right.
44DEFINITION
NATURAL EXPONENTIAL FUNCTION, BASE e
45Section 10.3Exercise 9
Chapter 10
46(No Transcript)
47Yes
48increasing
49Section 10.3Exercise 10
Chapter 10
50(No Transcript)
51(No Transcript)
52(No Transcript)
53Section 10.4
Logarithmic Functions and their Properties
54OBJECTIVES
55OBJECTIVES
56OBJECTIVES
57OBJECTIVES
58OBJECTIVES
59DEFINITION
LOG3x
Means the exponent to which we raise 3 to get x.
60DEFINITION
LOGARITHMIC FUNCTION
Æ’(x) y logbx is
equivalent to by x (b gt 0, b ? 1, and x gt 0)
61DEFINITION
EQUIVALENCE PROPERTY
For any b gt 0, b ? 1, bx by is equivalent to
x y.
62DEFINITION
PROPERTIES OF LOGARITHMS
63DEFINITION
OTHER PROPERTIES OF LOGARITHMS
64Section 10.4Exercise 11
Chapter 10
65(No Transcript)
66(No Transcript)
67(No Transcript)
68Section 10.4Exercise 12
Chapter 10
69(No Transcript)
70(No Transcript)
71Section 10.4Exercise 13
Chapter 10
72(No Transcript)
73Section 10.5
Common and Natural Logarithms
74OBJECTIVES
75OBJECTIVES
76OBJECTIVES
77OBJECTIVES
78OBJECTIVES
79DEFINITION
NATURAL LOGARITHMIC FUNCTION
Æ’(x) ln x, where x means loge x and x gt 0
80FORMULA
CHANGE-OF-BASE
81Section 10.5Exercise 18
Chapter 10
82(No Transcript)
83(No Transcript)
84Section 10.5Exercise 19
Chapter 10
85(No Transcript)
86Section 10.5Exercise 20
Chapter 10
87(No Transcript)
88(No Transcript)
89Section 10.5Exercise 21
Chapter 10
90(No Transcript)
91(No Transcript)
92Section 10.5Exercise 22
Chapter 10
93(No Transcript)
94(No Transcript)
95Section 10.5Exercise 23
Chapter 10
96(No Transcript)
97or
98(No Transcript)
99(No Transcript)
100Section 10.5Exercise 24
Chapter 10
101(No Transcript)
102(No Transcript)
103It takes 8.66 years to double the money.
104Section 10.5Exercise 25
Chapter 10
105(No Transcript)
106(No Transcript)
1071.386 years is the half-life of this substance.
108Section 10.6
Exponential and Logarithmic Equations and
Applications
109OBJECTIVES
110OBJECTIVES
111OBJECTIVES
112DEFINITION
EXPONENTIAL EQUATION
An equation in which the variable occurs in an
exponent.
113DEFINITION
EQUIVALENCE PROPERTY
For any b gt 0, b ? 1, bx by is equivalent to
x y.
114DEFINITION
EQUIVALENCE PROPERTY FOR LOGARITHMS
logbM logbN is
equivalent to M N
115PROCEDURE
SOLVING LOGARITHMIC EQUATIONS
- Write equation logbM N
- Write equivalent exponential equation. Solve.
- Check answer and discard values for M 0.