EENG 851: Advanced Signal Processing - PowerPoint PPT Presentation

1 / 70
About This Presentation
Title:

EENG 851: Advanced Signal Processing

Description:

EENG 851: Advanced Signal Processing – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 71
Provided by: iris6
Category:

less

Transcript and Presenter's Notes

Title: EENG 851: Advanced Signal Processing


1
EENG 851 Advanced Signal Processing
  • Chapter 2
  • Stochastic (random) processes using MATLAB
    command window
  • Mathematical Necessities (Matrices)
  • The Adaptive Linear Combiner
  • Examples

2
Standard Normal Random Process
figure(1)clf plot(110,randn(10,1),'')gri
d
3
Standard Normal Random Process
plot(1100,randn(100,1),'')grid
4
Standard Normal Random Process
plot(1100,randn(100,1))grid
5
Standard Normal Random Process
plot(11000,randn(1000,1))grid
6
Standard Uniform Random Process
plot(11000,rand(1000,1))grid
7
Standard Normal Random Process
plot(1100,randn(100,4))grid
8
Zero Mean Uniform Random Process
plot(1100,rand(100,4)-.5)grid
9
Mathematical Necessities
10
Mathematical Necessities (Cont)
11
Mathematical Necessities (Cont)
12
Mathematical Necessities (Cont)
A1 2 34 5 6 A 1 2 3 4
5 6 B3 2 1 04 3 2 15 4 3 2 B
3 2 1 0 4 3 2 1
5 4 3 2 AB ans 26
20 14 8 62 47 32 17
13
Mathematical Necessities (Cont)
A1 2 34 5 67 8 9 A 1 2 3
4 5 6 7 8 9 B 2 1
03 2 14 3 2 B 2 1 0 3
2 1 4 3 2
AB ans 20 14 8 47 32
17 74 50 26 BA ans 6 9
12 18 24 30 30 39 48
AB-BA ans 14 5 -4 29 8
-13 44 11 -22
14
Mathematical Necessities (Cont)
A.B ??? Error using gt . Matrix dimensions
must agree. A.B(12,13) ans 3 4
3 16 15 12 A.B(2 3,4 1
2) ans 1 8 9 8 25 24
A1 2 34 5 6 A 1 2 3 4
5 6 B3 2 1 04 3 2 1 5 4 3 2 B
3 2 1 0 4 3 2
1 5 4 3 2
15
Mathematical Necessities (Cont)
16
Mathematical Necessities (Cont)
A1 2 j4 5 -j A 1.0000
2.0000 0 1.0000i 4.0000
5.0000 0 - 1.0000i
A' ans 1.0000 4.0000
2.0000 5.0000 0
- 1.0000i 0 1.0000i
A.' ans 1.0000 4.0000
2.0000 5.0000
0 1.0000i 0 - 1.0000i
17
Mathematical Necessities (Cont)
A' ans 1 4 2 5 3
6 B' ans 3 4 5 2 3
4 1 2 3 0 1 2
(AB)' ans 26 62 20 47 14
32 8 17 B'A' ans 26 62
20 47 14 32 8 17
A1 2 34 5 6 A 1 2 3 4
5 6 B3 2 1 04 3 2 1 5 4 3 2 B
3 2 1 0 4 3 2
1 5 4 3 2
18
Mathematical Necessities (Cont)
A1 2 00 1 -20 0 2 A 1 2
0 0 1 -2 0 0 2
inv(A) ans 1.0000 -2.0000 -2.0000
0 1.0000 1.0000 0 0
0.5000
B2 -1 01 1 -11 0 -1 B 2 -1
0 1 1 -1 1 0 -1
inv(B) ans 0.5000 0.5000 -0.5000
0.0000 1.0000 -1.0000 0.5000 0.5000
-1.5000
19
Mathematical Necessities (Cont)
A1 2 00 1 -20 0 2 A 1 2
0 0 1 -2 0 0 2 B2
-1 01 1 -11 0 -1 B 2 -1 0
1 1 -1 1 0 -1
inv(AB) ans 0.5000 -0.5000
-0.7500 0 1.0000 0.5000 0.5000
-0.5000 -1.2500 inv(B)inv(A) ans
0.5000 -0.5000 -0.7500 0.0000 1.0000
0.5000 0.5000 -0.5000 -1.2500
20
Mathematical Necessities (Cont)
21
Mathematical Necessities (Cont)
A1 2 32 4 53 5 6 A 1 2 3
2 4 5 3 5 6
inv(A) ans 1.0000 -3.0000 2.0000
-3.0000 3.0000 -1.0000 2.0000 -1.0000
0
22
Mathematical Necessities (Cont)
B1 1j 2j1-j 2 3j2-j 3-j 3 B
1.0000 1.0000 1.0000i 2.0000
1.0000i 1.0000 - 1.0000i 2.0000
3.0000 1.0000i 2.0000 - 1.0000i 3.0000 -
1.0000i 3.0000 inv(B) ans
1.0000 0.0000i -1.0000 0.5000i 0.5000 -
0.5000i -1.0000 - 0.5000i 0.5000 0.0000i
0.0000 0.5000i 0.5000 0.5000i 0.0000 -
0.5000i 0.0000 0.0000i
23
The Adaptive Linear Combiner (ALC)
Weight Vector
Input Signal Vector
Output Signal
24
The ALC (Cont)
25
The ALC (Cont)
26
ALC Notation
27
ALC Notation (Cont)
28
ALC Notation (Cont)
29
Desired Response and Error
30
Desired Response and Error (Cont)
31
The Performance Function
32
The Performance Function (Cont)
33
The Performance Function (Cont)
34
The Performance Function (Cont)
35
The Performance Function (Cont)
36
The Performance Function (Cont)
37
Gradient and Minimum Mean-Square Error
38
Gradient and Minimum MSE (Cont)
39
Gradient and Minimum MSE (Cont)
40
Gradient and Minimum MSE (Cont)
41
Gradient and Minimum MSE (Cont)
42
Gradient and Minimum MSE (Cont)
43
Example of a Performance Surface
44
Example of a Performance Surface (Cont)
45
Example of a Performance Surface (Cont)
46
Example of a Performance Surface (Cont)
47
Example of a Performance Surface (Cont)
48
Example of a Performance Surface (Cont)
49
Example of a Performance Surface (Cont)
adsp performance surface 7/19/99 clear N5
P0 -sin(2pi/N)' R.51 cos(2pi/N)cos(2pi
/N) 1 Edk22 W-3.13-3.13 CEdk2ones
(61,61)W.'RW-2P.'W x-10.210y-10.210 C
m0 for w0x mm1 n0 for w1y
nn1 Ww0 w1'
C(m,n)Edk2W'RW-2P.'W end end
figure(1)clf mesh(x,y,C)grid grid title('Perform
ance Surface') ylabel('w0') xlabel('w1') zlabel('M
SE')
50
Example of a Performance Surface (Cont)
51
Example of a Performance Surface (Cont)
52
Example of a Performance Surface (Cont)
53
Example of a Performance Surface (Cont)
54
Example of a Performance Surface (Cont)
55
Alternative Expression for the Gradient
56
Alternative Expression for the Gradient (Cont)
57
Alternative Expression for the Gradient (Cont)
58
Decorrelation of Error and Input Components
59
Class Example 1
60
Class Example (Cont)
61
Class Example (Cont)
62
Class Example (Cont)
63
Class Example (Cont)
Class Example WS page 276
10/1/99 w-1.13 cw.2-2w4 figure(1)clf pl
ot(w,c)grid axis(-1 3 0 7) title('Example
1') xlabel('Weight, w1') ylabel('Mean Square
Error')
64
Class Example (Cont)
65
Exercise 3. To be handed in.
66
Exercise 3. (Cont)
67
ALC Example
68
ALC Example (Cont)
69
ALC Example (Cont)
70
ALC Example (Cont)
EENG 851 ALC example WS 264 8/23/00
saved as adspxmpl26_4.m clear w0-4.058 w1-10
.052 v4 4 W0,W1meshgrid(w0,w1) N5 c5.
5W0.2.5W1.2cos(2pi/N)W0.W12sin(2pi/N)
W12 figure(1)clf contour(w0,w1,c5,v) clabel(c
) axis('square') grid title('ALC Example WS
26-4') ylabel('w1') xlabel('w0') hold
on N10 c10.5W0.2.5W1.2cos(2pi/N)W0.W1
2sin(2pi/N)W12 contour(w0,w1,c10,v,'r') hold
off
Write a Comment
User Comments (0)
About PowerShow.com