Title: Linear Programming (LP)
1Linear Programming (LP)
- Decision Variables
- Objective (MIN or MAX)
- Constraints
- Graphical Solution
2History of LP
- World War II shortages
- Limited resources
- Research at RAND in Santa Monica
- Examples limited number of machines
- Limited number of skilled workers
- Budget limits
- Time restrictions (deadlines)
- Raw materials
3LP Requirements
- Single objective MAX or MIN
- Objective must be linear function
- Linear constraints
4Linear Programming
- I. Profit maximization example
- II. Cost minimization example
5I. Profit MAX Example
- Source Render and Stair, Quantitative Analysis
for Management , Ch 2 - Furniture factory
- Decision variables
- X1 number of tables to make
- X2 number of chairs to make
6Objective MAX profit
- Each table 7 profit
- Each chair 5 profit
- Total profit 7X1 5X2
7Carpenter Constraint
- Labor Constraint
- 240 hours available per week
- Each table requires 4 hours from carpenter
- Each chair requires 3 hours from carpenter
- 4X1 3X2 lt 240
8Painter Constraint
- 100 hours available per week
- Each table requires 2 hours from painter
- Each chair requires 1 hour from painter
- 2X1 X2 lt 100
9Non-negativity constraints
- X1 gt 0
- X2 gt 0
- Cant have negative production
10Graphical Solution
- Non-negativity constraints imply positive
(northeast) quadrant
11X2
X1
0,0
12Plot carpenter constraint
- Temporarily convert to equation
- 4X1 3X2 240
- Intercept on X1 axis X2 0
- 4X1 3(0) 240
- 4X1 240
- X1 240/4 60
- Coordinate (60,0)
13X2
X1
0,0
60,0
14Plot carpenter constraint
- Temporarily convert to equation
- 4X1 3X2 240
- Intercept on X2 axis X1 0
- 4(0) 3X2 240
- 3X2 240
- X2 240/3 80
- Coordinate (0,80)
15X2
chairs
(0,80)
.
X1tables
(60,0) .
0,0
16X2
chairs
(0,80)
.
X1tables
(60,0) .
0,0
17Convert back to inequality
18X2
chairs
(0,80)
.
X1tables
(60,0) .
0,0
19Plot painter constraint
202X1 X2 100
X1 X2
0 100
100/2 50 0
21X2
chairs
0,100
(0,80)
.
X1tables
(60,0) .
50,0
0,0
22Feasible Region
- Decision how many tables and chairs to make
- Feasible allocation satisfies all constraints
23MAXIMUM PROFIT
- Must be on boundary
- If not on boundary, could increase profit by
making more tables or chairs - Must be feasible
- Corner Point
24X2
chairs
NOT FEASIBLE
0,100
(0,80)
.
3
CORNER POINTS
NOT FEASIBLE
X1tables
(60,0) .
50,0
0,0
253RD CORNER POINT
- Intersection of 2 constraints
- Temporarily convert to equations
- (1) 4X1 3X2 240
- (2) 2X1 X2 100
- Solve 2 equations in 2 unknowns
- (2)3implies 6X1 3X2 300
- Subtract (1) - 4X1 - 3X2 -240
- 2X1 60
- X1 30
-
26Substitute into equation
- (1) 4X1 3X2 240
- 4(30) 3X2 240
- 120 3X2 240
- 3X2 240 120 120
- X2 120/3 40
- 3rd corner point (30,40)
27X2
chairs
NOT FEASIBLE
0,100
(0,80)
.
(30,40)
NOT FEASIBLE
X1tables
(60,0) .
50,0
0,0
28MAXIMUM PROFIT
X1tables X2chairs Interpret Profit 7X15X2
50 0 Make tables only 7(50)0 350
0 80 Make chairs only 7(0)5(80) 400
30 40 Mix of tables, chairs 7(30)5(40) 410 MAX
29Exam Format
- Make 30 tables and 40 chairs for 410 profit
30II. Cost minimization example
- Diet problem
- Decision variables number of pounds of brand 1
and brand 2 to buy to prepare processed food - Objective Function MINIMIZE cost
- Each pound of brand 1 costs 2 cents, pound of
brand 2 costs 3 cents - Objective MIN 2X1 3X2
31CONSTRAINTS
- Each pound of brand 1 has 5 ounces of ingredient
A, 4 ounces of ingredient B, and 0.5 ounces of
ingr C - Each pound of brand 2 has 10 ounces of ingr A
and 3 ounces of ingr B - We need at least 90 ounces of ingr A, 48 ounces
of ingr B, and 1.5 ounces of ingr C
32CONSTRAINTS
- (A) 5X1 10X2 gt 90
- (B) 4X1 3X2 gt 48
- (C) 0.5X1 gt 1.5
- (D) X1 gt 0
- (E) X2 gt 0
33X2
X1
34(A) 5X110X2gt90
X1 X2 INTERCEPT
0 90/109 (0,9)
90/518 0 (18,0)
35X2
0,9
A
X1
18,0
36(B) 4X13X2gt48
X1 X2
0 48/316
48/412 0
37X2
0,16
0,9
B
A
X1
18,0
12,0
38(C) 0.5X1 gt 1.5
X1 X2
0 1.5/0 undefined, so no intercept on vertical axis
1.5/.5 3 0
39(C) Must be vertical line
40X2
C
0,16
0,9
B
A
X1
18,0
12,0
41X2
C
FEASIBLE REGION UNBOUNDED
0,16
0,9
B
A
X1
18,0
12,0
42CORNER POINTS
- Only 1 intercept feasible (18,0)
- Solve 2 equations in 2 unknowns
- B and C
- A and B
43B and C
- B 4X1 3X2 48
- C X1 3
- Substitute X13 into B
- B 4(3) 3X2 48
- 12 3X2 48
- 3X2 36
- X2 12
44X2
C
FEASIBLE REGION UNBOUNDED
3,12
B
A
X1
18,0
45A and B
- A 5X1 10X2 90
- B 4X1 3X2 48
- (A)(4) 20X1 40X2 360
- (B)(5) 20X1 15X2 240
- Subtract 25X2 120
- X2 4.8
- Substitute5X1 10(4.8) 90
- X1 8.4
46X2
C
FEASIBLE REGION UNBOUNDED
3,12
B
8.4,4.8
A
X1
18,0
47MINIMIZE COST
X1 BRAND 1 X2 BRAND 2 COST 2X13X2
18 0 BRAND1 ONLY 2(18)3(0) 36 CENTS
3 12 2(3)3(12)42 CENTS
8.4 4.8 2(8.4) 3(4.8)31 MIN
48EXAM FORMAT
- BUY 8.4 POUNDS OF BRAND 1 AND 4.8 POUNDS OF
BRAND 2 AT COST OF 31 CENTS
49COMPUTER OUTPUT
- If computer output says no feasible solution,
no feasible region - Reason 1 unrealistic constraints
- Reason 2 computer input error
50No feasible region
51MULTIPLE OPTIMA
- If 2 corner points have same objective function
value, ok to pick midway point
52X2
NOT FEASIBLE
Any point between 2 100 points is MAX
100
.
100
NOT FEASIBLE
.
80
X1
0,0