Linear Programming (LP) - PowerPoint PPT Presentation

About This Presentation
Title:

Linear Programming (LP)

Description:

Research at RAND in Santa Monica. Examples: limited number of machines ... Each pound of brand #2 has 10 ounces of ingr A and 3 ounces of ingr B ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 53
Provided by: GordonJ4
Learn more at: http://www.csun.edu
Category:

less

Transcript and Presenter's Notes

Title: Linear Programming (LP)


1
Linear Programming (LP)
  • Decision Variables
  • Objective (MIN or MAX)
  • Constraints
  • Graphical Solution

2
History of LP
  • World War II shortages
  • Limited resources
  • Research at RAND in Santa Monica
  • Examples limited number of machines
  • Limited number of skilled workers
  • Budget limits
  • Time restrictions (deadlines)
  • Raw materials

3
LP Requirements
  • Single objective MAX or MIN
  • Objective must be linear function
  • Linear constraints

4
Linear Programming
  • I. Profit maximization example
  • II. Cost minimization example

5
I. Profit MAX Example
  • Source Render and Stair, Quantitative Analysis
    for Management , Ch 2
  • Furniture factory
  • Decision variables
  • X1 number of tables to make
  • X2 number of chairs to make

6
Objective MAX profit
  • Each table 7 profit
  • Each chair 5 profit
  • Total profit 7X1 5X2

7
Carpenter Constraint
  • Labor Constraint
  • 240 hours available per week
  • Each table requires 4 hours from carpenter
  • Each chair requires 3 hours from carpenter
  • 4X1 3X2 lt 240

8
Painter Constraint
  • 100 hours available per week
  • Each table requires 2 hours from painter
  • Each chair requires 1 hour from painter
  • 2X1 X2 lt 100

9
Non-negativity constraints
  • X1 gt 0
  • X2 gt 0
  • Cant have negative production

10
Graphical Solution
  • Non-negativity constraints imply positive
    (northeast) quadrant

11
X2
X1
0,0
12
Plot carpenter constraint
  • Temporarily convert to equation
  • 4X1 3X2 240
  • Intercept on X1 axis X2 0
  • 4X1 3(0) 240
  • 4X1 240
  • X1 240/4 60
  • Coordinate (60,0)

13
X2
X1
0,0
60,0
14
Plot carpenter constraint
  • Temporarily convert to equation
  • 4X1 3X2 240
  • Intercept on X2 axis X1 0
  • 4(0) 3X2 240
  • 3X2 240
  • X2 240/3 80
  • Coordinate (0,80)

15
X2
chairs
(0,80)
.
X1tables
(60,0) .
0,0
16
X2
chairs
(0,80)
.
X1tables
(60,0) .
0,0
17
Convert back to inequality
  • 4X1 3X2 lt 240

18
X2
chairs
(0,80)
.
X1tables
(60,0) .
0,0
19
Plot painter constraint
  • Equation 2X1 X2 100

20
2X1 X2 100
X1 X2
0 100
100/2 50 0
21
X2
chairs
0,100
(0,80)
.
X1tables
(60,0) .
50,0
0,0
22
Feasible Region
  • Decision how many tables and chairs to make
  • Feasible allocation satisfies all constraints

23
MAXIMUM PROFIT
  • Must be on boundary
  • If not on boundary, could increase profit by
    making more tables or chairs
  • Must be feasible
  • Corner Point

24
X2
chairs
NOT FEASIBLE
0,100
(0,80)
.
3
CORNER POINTS
NOT FEASIBLE
X1tables
(60,0) .
50,0
0,0
25
3RD CORNER POINT
  • Intersection of 2 constraints
  • Temporarily convert to equations
  • (1) 4X1 3X2 240
  • (2) 2X1 X2 100
  • Solve 2 equations in 2 unknowns
  • (2)3implies 6X1 3X2 300
  • Subtract (1) - 4X1 - 3X2 -240
  • 2X1 60
  • X1 30

26
Substitute into equation
  • (1) 4X1 3X2 240
  • 4(30) 3X2 240
  • 120 3X2 240
  • 3X2 240 120 120
  • X2 120/3 40
  • 3rd corner point (30,40)

27
X2
chairs
NOT FEASIBLE
0,100
(0,80)
.
(30,40)
NOT FEASIBLE
X1tables
(60,0) .
50,0
0,0
28
MAXIMUM PROFIT
X1tables X2chairs Interpret Profit 7X15X2
50 0 Make tables only 7(50)0 350
0 80 Make chairs only 7(0)5(80) 400
30 40 Mix of tables, chairs 7(30)5(40) 410 MAX
29
Exam Format
  • Make 30 tables and 40 chairs for 410 profit

30
II. Cost minimization example
  • Diet problem
  • Decision variables number of pounds of brand 1
    and brand 2 to buy to prepare processed food
  • Objective Function MINIMIZE cost
  • Each pound of brand 1 costs 2 cents, pound of
    brand 2 costs 3 cents
  • Objective MIN 2X1 3X2

31
CONSTRAINTS
  • Each pound of brand 1 has 5 ounces of ingredient
    A, 4 ounces of ingredient B, and 0.5 ounces of
    ingr C
  • Each pound of brand 2 has 10 ounces of ingr A
    and 3 ounces of ingr B
  • We need at least 90 ounces of ingr A, 48 ounces
    of ingr B, and 1.5 ounces of ingr C

32
CONSTRAINTS
  • (A) 5X1 10X2 gt 90
  • (B) 4X1 3X2 gt 48
  • (C) 0.5X1 gt 1.5
  • (D) X1 gt 0
  • (E) X2 gt 0

33
X2
X1
34
(A) 5X110X2gt90
X1 X2 INTERCEPT
0 90/109 (0,9)
90/518 0 (18,0)
35
X2
0,9
A
X1
18,0
36
(B) 4X13X2gt48
X1 X2
0 48/316
48/412 0
37
X2
0,16
0,9
B
A
X1
18,0
12,0
38
(C) 0.5X1 gt 1.5
X1 X2
0 1.5/0 undefined, so no intercept on vertical axis
1.5/.5 3 0
39
(C) Must be vertical line
  • .5X1 1.5
  • X1 3

40
X2
C
0,16
0,9
B
A
X1
18,0
12,0
41
X2
C
FEASIBLE REGION UNBOUNDED
0,16
0,9
B
A
X1
18,0
12,0
42
CORNER POINTS
  • Only 1 intercept feasible (18,0)
  • Solve 2 equations in 2 unknowns
  • B and C
  • A and B

43
B and C
  • B 4X1 3X2 48
  • C X1 3
  • Substitute X13 into B
  • B 4(3) 3X2 48
  • 12 3X2 48
  • 3X2 36
  • X2 12

44
X2
C
FEASIBLE REGION UNBOUNDED
3,12
B
A
X1
18,0
45
A and B
  • A 5X1 10X2 90
  • B 4X1 3X2 48
  • (A)(4) 20X1 40X2 360
  • (B)(5) 20X1 15X2 240
  • Subtract 25X2 120
  • X2 4.8
  • Substitute5X1 10(4.8) 90
  • X1 8.4

46
X2
C
FEASIBLE REGION UNBOUNDED
3,12
B
8.4,4.8
A
X1
18,0
47
MINIMIZE COST
X1 BRAND 1 X2 BRAND 2 COST 2X13X2
18 0 BRAND1 ONLY 2(18)3(0) 36 CENTS
3 12 2(3)3(12)42 CENTS
8.4 4.8 2(8.4) 3(4.8)31 MIN
48
EXAM FORMAT
  • BUY 8.4 POUNDS OF BRAND 1 AND 4.8 POUNDS OF
    BRAND 2 AT COST OF 31 CENTS

49
COMPUTER OUTPUT
  • If computer output says no feasible solution,
    no feasible region
  • Reason 1 unrealistic constraints
  • Reason 2 computer input error

50
No feasible region
51
MULTIPLE OPTIMA
  • If 2 corner points have same objective function
    value, ok to pick midway point

52
X2
NOT FEASIBLE
Any point between 2 100 points is MAX
100
.
100
NOT FEASIBLE
.
80
X1
0,0
Write a Comment
User Comments (0)
About PowerShow.com