Title: ME375 Dynamic System Modeling and Control
1MESB 374 System Modeling and AnalysisTranslati
onal Mechanical System
2Translational Mechanical Systems
- Basic (Idealized) Modeling Elements
- Interconnection Relationships -Physical Laws
- Derive Equation of Motion (EOM) - SDOF
- Energy Transfer
- Series and Parallel Connections
- Derive Equation of Motion (EOM) - MDOF
3Key Concepts to Remember
- Three primary elements of interest
- Mass ( inertia ) M
- Stiffness ( spring ) K
- Dissipation ( damper ) B
- Usually we deal with equivalent M, K, B
- Distributed mass ? lumped mass
- Lumped parameters
- Mass maintains motion
- Stiffness restores motion
- Damping eliminates motion
(Kinetic Energy)
(Potential Energy)
(Eliminate Energy ? )
(Absorb Energy )
4Variables
- x displacement m
- v velocity m/sec
- a acceleration m/sec2
- f force N
- p power Nm/sec
- w work ( energy ) Nm
- 1 Nm 1 J (Joule)
5Basic (Idealized) Modeling Elements
- Reality
- 1/3 of the spring mass may be considered into the
lumped model. - In large displacement operation springs are
nonlinear.
Linear spring ? nonlinear spring ? broken spring
!!
- Idealization
- Massless
- No Damping
- Linear
Hard Spring
Potential Energy
Soft Spring
6Basic (Idealized) Modeling Elements
fD
7Interconnection Laws
Lumped Model of a Flexible Beam
- Newtons Third Law
- Action Reaction Forces
Massless spring
E.O.M.
8Modeling Steps
- Understand System Function, Define Problem, and
Identify Input/Output Variables - Draw Simplified Schematics Using Basic Elements
- Develop Mathematical Model (Diff. Eq.)
- Identify reference point and positive direction.
- Draw Free-Body-Diagram (FBD) for each basic
element. - Write Elemental Equations as well as
Interconnecting Equations by applying physical
laws. (Check eq unk) - Combine Equations by eliminating intermediate
variables. - Validate Model by Comparing Simulation Results
with Physical Measurements
9Vertical Single Degree of Freedom (SDOF) System
g
The motion of the object
- Develop Mathematical Model (Diff. Eq.)
- Identify reference point and positive direction.
- Draw Free-Body-Diagram (FBD)
- Write Elemental Equations
From the undeformed position
From the deformed (static equilibrium) position
- Validate Model by Comparing Simulation Results
with Physical Measurement
10Energy Distribution
- EOM of a simple Mass-Spring-Damper System
- We want to look at the energy distribution of
the system. How should we start ? - Multiply the above equation by the velocity term
v Ü What have we done ? - Integrate the second equation w.r.t. time
Ü What are we doing now ?
f
Change of kinetic energy
Change of potential energy
Energy dissipated by damper
11Example -- SDOF Suspension (Example)
- Simplified Schematic (neglecting tire model)
-
- Suspension System
- Minimize the effect of the surface roughness of
the road on the drivers comfort.
From the absolute zero
From the path
From nominal position
g
M
x
K
B
x
x
p
12Series Connection
fS
13Series Connection
Û
fD
fD
BEQ
B1
B2
14Parallel Connection
fS
fS
Û
15Parallel Connection
Û
16Horizontal Two Degree of Freedom (TDOF) System
K
K
17Horizontal Two Degree of Freedom (TDOF) System
Static coupling
Dynamic coupling
18Two DOF System Matrix Form of EOM
K
K
Input vector
Output vector
Mass matrix
Damping matrix
SYMMETRIC
Stiffness matrix
NON-SYMMETRIC
19MDOF Suspension
- Simplified Schematic (with tire model)
TRY THIS
x
p
20MDOF Suspension
- Simplified Schematic (with tire model)
Assume ref. is when springs are Deflected by
weights
Car body
Suspension
Wheel
Tire
Road
Reference
21Example -- MDOF Suspension
- Apply Interconnection Laws
22Example -- MDOF Suspension
Mass matrix
Damping matrix
Stiffness matrix
Input Vector