Title: Principal Component Analysis
1Principal Component Analysis
2Outline
- Max the variance of the output coordinates
- Optimal reconstruction
- Generating data
- Limitations of PCA
3Eigenfaces
Variance in Face Pictures
- Figure/ground
- Orientation
- Lighting
- Hairline
4Eigenfaces
100 images30x30 pixels
5Maximizing Output Variance
The first eigenvector (highest eigenvalue)
characterizes the maximal variance in the image
figure - background
6Maximizing Output Variance
The second eigenvector characterizes right
orientation
7Maximizing Output Variance
8Maximizing Output Variance
9Optimal Reconstruction
q1
q2
q4
q8
Original Image
q16
q32
q64
q100
10If ngtgtm
e.g. n80x80 pixels gtgt m100 images Problem
finding the eigenvectors of a 6400x6400 matrix
O(64003) Solution extract the eigenvectors Q of
ATA
11If ngtm
q1
q2
q4
q8
Original Image
q16
q32
q64
q100
12Generating Data
13(No Transcript)
14Generating Data
15Kernel PCA
16Limits of PCA
Should the goal be finding independent rather
than pair-wise uncorrelated dimensions
- Independent Component Analysis (ICA)
PCA
ICA
17Limits of PCA
Are the maximal variance dimensions the relevant
dimensions for preservation?
- Relevant Component Analysis (RCA)
- Fisher Discriminant analysis (FDA)