OCE301 Part VI: Data Analysis - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

OCE301 Part VI: Data Analysis

Description:

Part VI: Data Analysis & Probability Theory. lecture 2. Random Variables ... every number a the probability with which X. assumes a is defined. ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 29
Provided by: oceaneng
Category:
Tags: analysis | data | oce301 | part

less

Transcript and Presenter's Notes

Title: OCE301 Part VI: Data Analysis


1
OCE301 Part VI Data Analysis Probability
Theorylecture 2
2
Random Variables
The quantity that we observe in an experiment is
called a random variable ( or stochastic
variable) because the value it will assume in
the next trial depends on chance, on randomness.
Example
If we roll a dice, we get one of the numbers
from 1 to 6, but we dont know which one will
show up next.
3
Definition Random Variable
Use probability function to characterize a random
variable
4
Rolling a Fair Die
Probability mass function
discrete random variable
Total probability is equal to 1
5
Rotating an Unbiased Disk
angle q to which the indicator points
Probability density function
continuous random variable
Total probability is equal to 1
6
Cumulative Distribution Function
Cumulative distribution function (cdf)
7
Fundamental Probability Functions
Cumulative distribution function (cdf)
X random variable
x fixed number
Probability of exceedance (poe)
Probability density function (pdf)
8
Problem Set 22.5 (No. 17)
1
0.1
0.9
9
Mean, Variance Discrete r.v.
mean
Probability mass function
variance
10
Mean, Variance Continuous r.v.
mean
Probability density function
variance
11
Expectation and Moments
mathematical expectation
kth moment
kth central moment
12
Uniform Distribution
a
b
13
Uniform Distribution
f (x)
x
a
b
14
Problem Set 22.6 (No. 1)
1
15
Normal (Gaussian) Density Function
m mean
s standard deviation
16
Normal Density Function
mu0 sigma1 x-40.014 psd1/(sqrt(2pi)sigm
a)exp(-1/2((x-mu)/sigma).2) plot(x,psd)
axis(-4,4,0,0.5) grid
17
Standard Normal pdf (various s)
s 1
s 2
18
Normal Distribution Function
(Cumulative) normal distribution function
tabulated in many textbooks
(normal table)
Use of the normal table
19
Normal Table (page A89)
20
Standard Normal pdf/cdf Plot
pdf
cdf
21
Error Function
Matlab Error function.
Y erf(X) is the error function for each element
of X. X must be real. The error function is
defined as erf(x) 2/sqrt(pi)
integral from 0 to x of exp(-t2) dt.
22
Normal Table from Error Function
23
Matlab Verifications
Matlab verifications
gtgt 0.5(1erf(1/sqrt(2))) ans 0.8413 gtgt
0.5(1erf(2/sqrt(2))) ans 0.9772 gtgt
0.5(1erf(3/sqrt(2))) ans 0.9987
24
Matlab Function phi.m
function xphi(z) -------------------------------
------ cdf of the standardized normal
distribution (normal table) ---------------------
---------------- if zlt0 t0.5(1erf(-z/sqrt(2)
)) x1-t else x0.5(1erf(z/sqrt(2))) en
d
25
Sigma-limits
26
Intervals of Certain Probability
gtgt erf(1.96/sqrt(2)) ans 0.9500 gtgt
erf(2.58/sqrt(2)) ans 0.9901 gtgt
erf(3.29/sqrt(2)) ans 0.9990
27
Problem Set 22.8 (No. 1a)
Let X be normal with mean 10 and variance 4. Find
P(X gt 12)
28
Problem Set 22.8 (No. 1d)
Let X be normal with mean 10 and variance 4. Find
P(9 lt X lt 13)
Write a Comment
User Comments (0)
About PowerShow.com