The sum-product theorem and applications - PowerPoint PPT Presentation

About This Presentation
Title:

The sum-product theorem and applications

Description:

... called an (S, )-extractor. S=Lk: Affine subspaces of (F2)n of dimension ... Exists: Optimal affine extractor k 2log n. Explicit: Optimal affine extractor k n/2 ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 22
Provided by: aviwig
Learn more at: https://www.math.ias.edu
Category:

less

Transcript and Presenter's Notes

Title: The sum-product theorem and applications


1
The sum-product theoremand applications
  • Avi Wigderson
  • School of Mathematics
  • Institute for Advanced Study

2
Plan of the talk
  • Background and statement of the S-P Theorem
  • Applications of the Theorem to
  • -- Combinatorial Geometry
  • -- Analysis/PDE
  • -- Number Theory
  • -- Group Theory
  • -- Extractor Theory
  • Sketch of the proof of S-P Theorem
  • -- Balog-Szemeredi-Gowers Lemma
  • -- Plunneke-Rusza Inequalities

3
Sum-Product in the Reals
  • F a field, A?F
  • AA ab a,b?A
  • A?A a?b a,b?A
  • A1,2,3,k then AA lt 2A
  • A1,2,4,2k then AxA lt 2A
  • Is there a set A for which both AA, A?A
    small?
  • ThmES FR.
  • ??gt0 ?A either AAgtA1? or A?AgtA1?

4
Sum-Product in finite fields
  • ThmES FR.
  • ??gt0 ?A either AAgtA1? or A?AgtA1?
  • Can this be true in a finite field?
  • But if AF or too big Assume AltF.9
  • But if A is a subfield Assume no subfields
  • ThmBKT,K FFp p prime. ??gt0 ?A, AltF.9
  • either AAgtA1? or A?AgtA1?
  • Variants for small subfields, rings, etc.

5
Applications / Implications
  • -- Combinatorial Geometry
  • -- Analysis/PDE
  • -- Number Theory
  • -- Group Theory
  • -- Extractor Theory

6
Combinatorial Geometry
  • P a set of points in F2 Pn
  • L a set of lines in F2 Ln
  • I (p,l) point p is on line l
    incidences
  • BEFORE S-P THM
  • Trivial Any plane I lt n3/2
  • ThmST,E FReals I lt n4/3
  • USING S-P THM
  • ThmBKT FFp I lt n3/2-?

7
Analysis/PDE
  • - Divergence of Fourier series in Lp spaces (p?2)
  • Instability of solutions to wave equations
  • Kakeya Find the least area of a set S in R2
    containing a unit segment in every direction?
  • Besicovitch As small as you wish!
  • Questions Other measures (Hausdorff)
  • Higher dimensions (Rd)

8
Besicovitch construction
9
Kakeyas problemfinite fields
  • S ? (Fp)d a Kakeya set, if S contains a line in
    every possible direction (for large p).
  • B(d) is the smallest r such that ?S, S?(pr)
  • Conjecture B(d) d
  • BEFORE S-P THM
  • Trivial B(d) ? d/2
  • ThmW B(d) ? d/2 1
  • USING S-P THM
  • ThmBKT B(d) ? d/2 1 10-10

10
Number Theory
  • FFp G multiplicative subgroup of F
  • S(a,G) ?g?G ?ag Fourier coefficient at a
  • S(G) max S(a,G) a ? F
  • Trivial S(G) ? G. Want S(G) ? G1-? .
  • BEFORE S-P THM
  • G gt p1/2 W p3/7 HB p1/4 KS
  • USING S-P THM
  • ThmBK G gt p? implies S(G) ? G1-?(?) .
  • ThmBGK A gt p? implies S(Ak(?) ) ? Ak1-?(?)

11
Group Theory
  • H a finite group, T a (symmetric) set of
    generators of H.
  • Cay(HT) the Cayley graph g?h iff gh-1?T.
  • Diam(HT) the diameter of Cay(HT)
  • ?(HT) 2nd e-val of random walk on Cay(HT)
  • Cay(HT) expander ? ?(HT) lt 1- ? ?
    diam(HT) lt O(log H)
  • HSL(2,p), the group of 2?2 invertible matrices
    over Fp
  • BEFORE S-P THM
  • ThmS,LPS,M Few Ts for which Cay(HT) expands
  • USING S-P THM
  • ThmH ?T, diam(HT) lt polylog(H)
  • ThmBG T2, random, then Cay(HT) expands
    whp
  • ltTgt not cyclic in SL(2,Z), then Cay(HT)
    expands

12
Extractors Dispersers
  • S a class of probability distributions on 0,1n
  • X?S is often called a weak source of
    randomness
  • f 0,1n ? 0,1m which for all X?S satisfies
  • -- f(X) gt (1-?)2m is called an
    (S,?)-disperser
  • -- f(X) Um1 lt ? is called an
    (S,?)-extractor
  • Existence of f is a Ramsey/Discrepancy Theorem
  • Want Explicit (polytime computable) f.
  • Important research area with many applications.

13
Affine sources
  • f 0,1n ? 0,1m which for all X?S satisfies
  • -- f(X) gt (1-?)2m is called an
    (S,?)-disperser
  • -- f(X) Um1 lt ? is called an
    (S,?)-extractor
  • SLk Affine subspaces of (F2)n of dimension ??k.
  • f optimal if m ?(k) and ? 2?(-k)
  • BEFORE S-P THM
  • Exists Optimal affine extractor
    ?kgt2log n
  • Explicit Optimal affine extractor ?kgt
    n/2
  • USING S-P THM
  • BKSSW Explicit affine disperser with m1 ?kgt ?n
  • B Explicit optimal affine extractor
    ?kgt ?n
  • GR Extractors for large fields with low
    dimension

14
Two independent sources
  • f 0,12n ? 0,1m which for all X?S
    satisfies
  • -- f(X) gt (1-?)2m is called an
    (S,?)-disperser (m1 bipartite Ramsey Graph)
  • -- f(X) Um1 lt ? is called an
    (S,?)-extractor
  • SIk ?(X1,X2) H?(Xi)?k. Xi?0,1n
    independent
  • f optimal if m ?(k) and ? 2?(-k)
  • BEFORE S-P THM
  • E Exist optimal 2-source extractor
    ?kgt2log n
  • CG,V Explicit optimal 2-source extractor ?kgt
    n/2
  • USING S-P THM
  • B Explicit optimal 2-sourse extractor kgt
    .4999n
  • BKSSW Explicit 2-s disperser with m1 ?kgt ?n
  • BRSW Explicit 2-s disperser with m1 ?kgt n?

15
Statistical version of S-P Thm
  • A distribution on Fp, H0(A) log supp(A)
  • H2 ? HShannon ? H0 H2(A) -log A2 ? (
    ? H?(A) )
  • BKT, K H0(A) lt .9log p ? H0(AA) gt
    (1?)H0(A)
  • or
    H0(A?A) gt (1?)H0(A)
  • Want H2(A) lt .9log p ? H2(AA) gt
    (1?)H2(A)
  • or
    H2(A?A) gt (1?)H2(A)
  • False A (Arithmetic prog Geometric prog)/2
  • BKT, K H0(A) lt .9log p ? H0(A?AA) gt
    (1?)H0(A)
  • BIW H2(A) lt .9log p ? H2(A?AA) gt
    (1?)H2(A)

  • up to exponential L1 error.

16
Few Independent Sources
  • A,B,C indep dist. on Fp, r (A) H2(A) / (log
    p)
  • r min r(A), r(B), r(C)
  • BIW r lt .9 ? r(A?BC) gt (1?)r
  • r gt .9 ? r(A?BC) 1
  • Extractor from several independent sources
  • f1(A1,A2,A3) A1?A2A3
  • ft1 (3t1 sources) f1 ( ft(3t),
    ft(3t), ft(3t) )
  • S (A1,A2,Ac) indep sources on 0,1n, H2(Ai)
    gt k
  • BIW Opt explicit extractor for k?n,
    cpoly(1/?)
  • R Opt explicit extractor for kn?,
    cpoly(1/?)

17
Statistical S-P Condensers
  • A,B,C indep dist. on Fp, r(A) H2(A) / (log
    p)
  • r min r(A), r(B), r(C)
  • BIW r lt .9 ? r(A?BC) gt (1?)r
  • X distribution on 0,1n r(X) H2(X) / n
  • f 0,1n ? (0,1m)c is a condenser
  • if ?X, r(X) lt .9 ? ??i r(f(X)i) gt
    (1?)r(X)
  • BKSSW X(A,B,C) ? A, B, C, A?BC
    condenser
  • Iterating r? ? .9 with cpoly(1/?) m?(n)

18
Proof of the S-P theorem
  • Thm BKT FFp. ??lt.9 ??gt0 ?A, AF?
  • either AAgtA1? or A?AgtA1?
  • ProofBIW ? ?(?)
  • Rational expression R(A) e.g (AA-A?A)/(A?A?A)

  • (a1a2-a3a4)/(a5a6a7)
  • Lemma 1 ?R0 ?A R0(A)gtA1?
  • Lemma 2 AAltA1? and A?AltA1? then
  • ?R ?cc(R) R(A)ltA1c?
  • ?B BgtA1-c? and R(B)ltB1c?
  • Lemma 1 Lemma 2 imply Thm

19
Proof of the Lemma 1
  • Lemma 1 ?R0 ?A, AF? we have
    R0(A)gtA1?
  • Proof Pigeonhole principle ?k?N, F1/k?N
  • A (A-A)/(A-A) AF?
  • R0(A) A (A-A)/(A-A) AF?
  • Claim ??(1/(k1),1/k) (?? Ak lt F lt Ak1
    )
  • ? ? gt 1/k ? ? gt 1/(k-1) gt
    ?(1?)
  • Proof Assume ?lt1/k. Set 1s0,s1,,sk?F s.t.
  • ?j sj ? s0A s1A sj-1A
  • Define gAk1 ? F by g(x0,x1,,xk) ?sixi
  • Ak1gtF. ?x?y ?sixi ?siyi j largest
    s.t. xj ?yj
  • sj ?iltj si(xi-yi)/(xj-yj) ? s0A s1A
    sj-1A

20
Ingredients for Lemma 2
  • G Abelian group. A?G, ?gt0 arbitrary.
  • ThmR AA lt A1? ? A-A lt A12?
  • Cor R(A) large then P(A) large for a polynomial
    P
  • ThmP,R AA lt A1? ? AkA lt A1k?
  • ThmBS,G AA-1 lt A1? ?
  • ?A ? A, Agt A1-5? but AA lt
    A15?
  • All proofs Graph Theory

21
Conclusions Problems
  • Sum-Product Theorem is fundamental!
  • Has many variants and extensions (e.g. to rings)
  • Has many more applications
  • What is the best ? in the S-P theorem?
  • - in the Reals believed to be 1
  • - in finite fields cannot exceed 1/2
  • 2-source extractor for entropy lt .4999n
  • 2-source disperser for entropy ltlt no(1)
Write a Comment
User Comments (0)
About PowerShow.com