Title: H3 and the Planets
1H3 and the Planets
Steve Miller
- H3
- - the
- driver of
- planetary
- atmospheres
2H3 and the Planets
Steve Miller
- H3 in planetary atmospheres
Formed above the homopause - thermosphere/ionosph
ere Na(h) Na0 exp-h/Ha Ha kT/mag Pressure
lt 1mbar Number density lt 1018m-3 Temperatures
Jupiter 900-1100K Saturn 400K Uranus 500-750K
3H3 and the Planets
Steve Miller
Formation H2 hn / e- ? H2 e-
e- H2 H2 ? H3 H Charge
exchange H2(vgt4) H ? H2
H Destruction H3 e- ? H2 H / 3H
Protonation H3 X ? XH H2 In
planetary atmospheres, X CH4, C2H2, C2H6
4H3 and the Planets
Steve Miller
5H3 and the Planets
Steve Miller
- Medium resolution spectroscopy
Uranus 1999 L window spectrum H3 n2 fundamental
Temperature 600K H3 column density 5x1015
m-2 Total emission 10-5 W m-2
6H3 and the Planets
Steve Miller
- High resolution spectroscopy
Jupiter 1998 Doppler shifting of Q(1,0-)
vion 1 - 3km s-1
7H3 and the Planets
Steve Miller
Exospheric temperatures Calculated Measured
Jupiter 203K 940K Saturn
177K 420K Uranus 138K
800K Neptune 132K 600K
Why are they so hot?
8H3 and the Planets
Steve Miller
- H3 as a tracer of energy inputs
Particles (keV electrons) are accelerated along
magnetic field lines H3 formation
occurs Thermalisation then radiation What are
the mechanisms that cause this?
Connerney et al.
9H3 and the Planets
Steve Miller
10H3 and the Planets
Steve Miller
- In some spectral regions, H3 spectrum dominates
- 3-4mm - Particle inputs to upper atmosphere n mW m-2
- But increased particle flux creates more H3
- H3 emission balances this for Jupiter and
(probably) Uranus - but not for Saturn
This does NOT help the high temperature problem
BUT
11H3 and the Planets
Steve Miller
Many large exoplanets found close to central
star lt 0.5a.u. Solar radiation gt100 x
jovian Will atmosphere heat up uncontrollably
and boil off? More hn creates more H3 More H3
more cooling
Detection?
Becomes less effective at dlt0.4a.u. due to H2 ? H
H
12H3 and the Planets
Steve Miller
- H3 heating - Joule heating
HJ Eeq2 SP SP ? N(H3)
Typical values Eeq 1-3 Vm-1 SP 1-10mho BUT
13H3 and the Planets
Steve Miller
vion -Eeq x BJ / BJ2
Typical values BJ 10-3 Tesla vion 1-2 km
s-1 BUT
14H3 and the Planets
Steve Miller
- H3 heating - ion winds and ion drag
vneut k vion k 0.5 HJ (1-k)Eeq2
SP Hdrag k(1-k)Eeq2 SP Helec HJ Hdrag
Typical values Helec gt 1014W planetwide
15H3 and the Planets
Steve Miller
- Heating/cooling in an auroral event
Sept. 8, 1998 Sept. 11, 1998
T(H3) 940K 1065K
N(H3) 1.55x 1016 m-3 1.80x1016 m-3
vion 0.5 km s-1 1.0 km s-1
Helec 67.0 mW m-2 277.0 mW m-2
Precipitation 10.8 mW m-2 12.0 mW m-2
Conduction -0.3 mW m-2 -0.4 mW m-2
E(H3) -5.1 mW m-2 -10.0 mW m-2
E(CH4) -65.0 mW m-2 -103.3 mW m-2
Net heating 7.4 mW m-2 175.3 mW m-2
Henrik Melin et al., Icarus Articles in press,
2006.
16H3 and the Planets
Steve Miller
17H3 and the Planets
Steve Miller
Wion 0.34 WSat E(r ) WSat- Wionr x BSat
Typical values Helec n x 1012W planetwide
18H3 and the Planets
Steve Miller
Solar cycle control of total H3 emission
Effect of Sun-Magnetic Pole angle?
19H3 and the Planets
Steve Miller
- Jupiter Saturn Uranus
- Energy Tracer v v v
- Thermostat v v
- Conductivity v v v
- Heating v v ?
20H3 and the Planets
Steve Miller
George Millward Alan Aylward Tom Stallard
Makenzie Lystrup Henrik Melin Chris
Smith Bob Joseph Jonathan Tennyson Tom
Geballe Larry Trafton
Oka
- H3
- - the
- driver of
- planetary
- atmospheres