Title: DETERMINATION OF THE HUBBLE CONSTANT FROM X-RAY
1DETERMINATION OF THE HUBBLE CONSTANT FROM
X-RAY AND SUNYAEV-ZELDOVICH EFFECT OBSERVATIONS
OF HIGH-REDSHIFT GALAXY CLUSTERS
(Credit Joy et al. 2001)
MAX BONAMENTE UNIVERSITY OF ALABAMA IN
HUNTSVILLE MARSHALL JOY NASA MSFC SAM LAROQUE,
JOHN CARLSTROM UNIVERSITY OF CHICAGO
2(No Transcript)
3Clusters of similar mass have a
redshift-independent SZE effect
(Carlstrom et al. (2002)
4CHANDRA (with BIMA decrement contours overlaid)
Observables Surface brightness
(Credit Bonamente et al. 2006)
and temperature distribution
- Have SZE/X-ray available for 38 clusters,
z0.14-0.89 - (Bonamente et al. 2006, ApJ 647, 25 LaRoque et
al. 2006 ApJ 652, 917)
5- How to measure distances with X-ray and SZE
observations
- Joint use of X-ray and SZE observations
- Without assumptions on cosmological parameters,
one can derive simultaneously - distance DA and density ne of the
emitting/scattering gas
- Main advantages of this method
- Independent of Cepheid calibration (no standard
candles needed) - Reaches high redshift (z1)
6CLUSTER
Z
CLUSTER
Z
CL 00161609
0.541
ABELL 1689
0.183
ABELL 68
0.255
RX J1347.5-1145
0.451
ABELL 267
0.230
MS 1358.46245
0.327
ABELL 370
0.375
ABELL 1835
0.252
MS 0451.6-0305
0.550
MACS J1423.82404
0.545
MACS J0647.77015
0.584
ABELL 1914
0.171
ABELL 586
0.171
ABELL 1995
0.322
MACS J0744.83927
0.686
ABELL 2111
0.229
ABELL 611
0.288
ABELL 2163
0.202
ABELL 665
0.182
ABELL 2204
0.152
ABELL 697
0.282
ABELL 2218
0.176
ABELL 773
0.217
RX J1716.46708
0.813
ZW 3146
0.291
ABELL 2259
0.164
MACS J1115.25320
0.458
ABELL 2261
0.224
MS 1054.5-0321
0.826
MS 2053.7-0449
0.583
MS 1137.56625
0.784
MACS J2129.4-0741
0.570
MACS J1149.52223
0.544
RX J2129.70005
0.235
ABELL 1413
0.142
MAC J2214.9-1359
0.450
CL J1226.93332
0.890
MACS J2228.52036
0.412
MACS J1311.0-0310
0.490
7- Models of the gas distribution
- Use three models for the intra-cluster medium
- (1) Simple isothermal beta model
- (2) Isothermal beta model with 100 kpc cut
- (3) Non-isothermal, hydrostatic equilibrium
model with arbitrary temperature - profile and double-beta model density
distribution - Use a MCMC method, in which model parameters are
used to predict the - observables
- surface brightness
- temperature profile
- SZE decrement
- then compare with the observations in order to
do parameter estimation.
8- Examples of non isothermal modeling of
intra-cluster medium
SURFACE BRIGHTNESS
TEMPERATURE PROFILE
(Credit Bonamente et al. 2006)
9- Hubble diagram (DA vs. z) for hydrostatic
equilibrium model
(Credit Bonamente et al. 2006)
10- Comparison of Hubble diagrams for all 3 models
(Credit Bonamente et al. 2006)
The SCDM fits ... have the same quality as
that for the currently favored LCDM cosmology,
indicating that cluster distances alone can not
yet effectively constrain the energy density
parameters... (Bonamente et al. 2006)
11- Other methods to measure the Hubble constant
- Cepheid calibration of secondary distance
indicators Freedman et al. (2001)
(Credit Freedman et al. (2001)
12- Cepheid calibration of supernovae type Ia
(requires absolute calibration - of peak luminosity) Riess et al. (2004, 2005)
(Credit Riess et al. (2005)
13- Indirect measurement from WMAP Spergel et al
(2007)
(Credit Spergel et al. (2007)
The CMB data do not directly measure H0
however , by measuring ?mH02 ... the CMB
produces a determination of H0 if we assume a
simple flat LCDM model (Spergel et al. 2007)
14After about 80 years, it all seems to hang
together for the Hubble constant ...
(Credit Freedman et al. (2001)
15Cepheid-based and SZE-based agree on Hubble
constant , current uncertainty is 10-15
SZE
CEPHEIDS
(Credit Freedman et al. (2001)
2006