Title: Quantum mechanical wonders
1Quantum Memory for Light
2Quantum memory for light criteria
- Memory must be able to store independently
prepared - states of light
- The state of light must be mapped onto the
memory with - the fidelity higher than the fidelity of the
best - classical recording
- The memory must be readable
B. Julsgaard, J. Sherson, J. Fiuráek , I. Cirac,
and E. S. Polzik Nature, 432, 482 (2004)
quant-ph/0410072.
3These criteria should be met for memory in
4Mapping a Quantum State of Light onto Atomic
Ensemble
The beginning. Complete absorption
Squeezed Light pulse
Proposal Kuzmich, Mølmer, EP PRL 79, 4782
(1997)
Atoms
5Our light-atoms interface - the basics
Light pulse consisting of two modes
6Teleportation in the X,P representation
7Today another idea for (remote) state
transfer and its experimental implementation for
quantum memory for light
See also work on quantum cloning J. Fiurasek, N.
Cerf, and E.S. Polzik, Phys.Rev.Lett. 93,
180501 (2004)
8Implementation light-to-matter state transfer
No prior entanglement necessary
C
Feedback magnetic coils
Cesium atoms
F80
F?100
B. Julsgaard, J. Sherson, J. Fiuráek , I. Cirac,
and E. S. Polzik Nature, 432, 482 (2004)
quant-ph/0410072.
9Classical benchmark fidelity for transfer of
coherent states
Atoms
Best classical fidelity 50
K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac,
Phys. Rev. Lett. 94,150503 (2005),
10Preparation of the input state of light
Strong field A(t)
Quantum field - X,P
x
Polarizing cube
S1
P
Polarization state
X
11Quantum memory Step 1 - interaction
Light rotates atomic spin Stark shift
XL
Atomic spin rotates polarization of light
Faraday effect
Output light
Input light
Entanglement
12Quantum memory Step 2 - measurement feedback
Polarization measurement
Fidelity gt 100 (82 without SS atoms)
13Experimental realization of quantum memory for
light
14Encoding the quantum states in frequency sidebands
15Memory in atomic Zeeman coherences
Cesium
4
3
2
16Memory in rotating spin states
y
z
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
17Memory in rotating spin states - continued
x
z
y
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
18x
z
y
19(No Transcript)
20Stored state versus Input state mean amplitudes
X plane
read
write
t
output
input
Y plane
Magnetic feedback
21Stored state variances
22Fidelity of quantum storage
- State overlap averaged over
- the set of input states
23Quantum memory lifetime
24Quantum Memory for Light demonstrated
- Deterministic Atomic Quantum Memory proposed and
- demonstrated for coherent states with ltngt in
- the range 0 to 10 lifetime4msec
- Fidelity up to 70, markedly higher than best
- classical mapping