Molecular Dynamics - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Molecular Dynamics

Description:

Molecular Dynamics Basics (4.1, 4.2, 4.3) Liouville formulation (4.3.3) Multiple timesteps (15.3) Molecular Dynamics Theory: Compute the forces on the particles Solve ... – PowerPoint PPT presentation

Number of Views:274
Avg rating:3.0/5.0
Slides: 25
Provided by: BSm9
Category:

less

Transcript and Presenter's Notes

Title: Molecular Dynamics


1
Molecular Dynamics
  • Basics (4.1, 4.2, 4.3)
  • Liouville formulation (4.3.3)
  • Multiple timesteps (15.3)

2
Molecular Dynamics
  • Theory
  • Compute the forces on the particles
  • Solve the equations of motion
  • Sample after some timesteps

3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
Molecular Dynamics
  • Initialization
  • Total momentum should be zero (no external
    forces)
  • Temperature rescaling to desired temperature
  • Particles start on a lattice
  • Force calculations
  • Periodic boundary conditions
  • Order NxN algorithm,
  • Order N neighbor lists, linked cell
  • Truncation and shift of the potential
  • Integrating the equations of motion
  • Velocity Verlet
  • Kinetic energy

8
Periodic boundary conditions
9
Lennard Jones potentials
  • The Lennard-Jones potential
  • The truncated Lennard-Jones potential
  • The truncated and shifted Lennard-Jones potential

10
Phase diagrams of Lennard Jones fluids
11
Saving cpu time
Cell list
Verlet-list
12
Equations of motion
Verlet algorithm
Velocity Verlet algorithm
13
Lyaponov instability
14
Liouville formulation
Depends implicitly on t
Beware this solution is equally useless as the
differential equation!
Liouville operator
Solution
15
Let us look at them separately
Taylor expansion
Shift of coordinates
Shift of momenta
16
(No Transcript)
17
(No Transcript)
18
Call force(fx)
vxvxdeltfx/2
xxdeltvx Call force(fx)
vxvxdeltfx/2
19
Liouville Formulation
Velocity Verlet algorithm
Three subsequent coordinate transformations in
either r or p of which the Jacobian is one Area
preserving
Other Trotter decompositions are possible!
20
Multiple time steps
  • What to use for stiff potentials
  • Fixed bond-length constraints (Shake)
  • Very small time step

21
Multiple Time steps
Introduce dt?t/n
22
First
Now n times
23
Call force(fx_long,f_short)
vxvxdeltfx_long/2
vxvxddeltfx_short/2
xxddeltvx Call force_short(fx_short)
vxvxddeltfx_short/2
24
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com