Title: Binnenlandse Francqui Leerstoel VUB 2004-2005 2. Options and investments
1Binnenlandse Francqui Leerstoel VUB 2004-20052.
Options and investments
- Professor André Farber
- Solvay Business School
- Université Libre de Bruxelles
2Lessons from the binomial model
- Need to model the stock price evolution
- Binomial model
- discrete time, discrete variable
- volatility captured by u and d
- Markov process
- Future movements in stock price depend only on
where we are, not the history of how we got where
we are - Consistent with weak-form market efficiency
- Risk neutral valuation
- The value of a derivative is its expected payoff
in a risk-neutral world discounted at the
risk-free rate
3Mutiperiod extension European option
- Recursive method
- (European and American options)
- ?Value option at maturity
- ?Work backward through the tree. Apply 1-period
binomial formula at each node - Risk neutral discounting
- (European options only)
- ?Value option at maturity
- ?Discount expected future value (risk neutral) at
the riskfree interest rate
4Multiperiod valuation Example
- Data
- S 100
- Interest rate (cc) 5
- Volatility ? 30
- European call option
- Strike price X 100,
- Maturity 2 months
- Binomial model 2 steps
- Time step ?t 0.0833
- u 1.0905 d 0.9170
- p 0.5024
- 0 1 2 Risk neutral
probability 118.91 p² - 18.91 0.2524
- 109.05
- 9.46
- 100.00 100.00 2p(1-p)
- 4.73 0.00 0.5000
- 91.70
- 0.00
- 84.10 (1-p)²
- 0.00 0.2476
- Risk neutral expected value 4.77
- Call value 4.77 e-.05(.1667) 4.73
5From binomial to Black Scholes
- Consider
- European option
- on non dividend paying stock
- constant volatility
- constant interest rate
- Limiting case of binomial model as ?t?0
6Convergence of Binomial Model
7Understanding the PDE
- Assume we are in a risk neutral world
Expected change of the value of derivative
security
Change of the value with respect to time
Change of the value with respect to the price of
the underlying asset
Change of the value with respect to volatility
8Black Scholes PDE and the binomial model
- We have
- Binomial model p fu (1-p) fd er?t
- Use Taylor approximation
- fu f (u-1) S fS ½ (u1)² S² fSS ft ?t
- fd f (d-1) S fS ½ (d1)² S² fSS ft ?t
- u 1 ?v?t ½ ?²?t
- d 1 ?v?t ½ ?²?t
- er?t 1 r?t
- Substituting in the binomial option pricing model
leads to the differential equation derived by
Black and Scholes - BS PDE ft rS fS ½ ?² fSS r f
9And now, the Black Scholes formulas
- Closed form solutions for European options on non
dividend paying stocks assuming - Constant volatility
- Constant risk-free interest rate
Call option
Put option
N(x) cumulative probability distribution
function for a standardized normal variable
10Understanding Black Scholes
- Remember the call valuation formula derived in
the binomial model - C ? S0 B
- Compare with the BS formula for a call option
- Same structure
- N(d1) is the delta of the option
- shares to buy to create a synthetic call
- The rate of change of the option price with
respect to the price of the underlying asset (the
partial derivative CS) - K e-rT N(d2) is the amount to borrow to create a
synthetic call
N(d2) risk-neutral probability that the option
will be exercised at maturity
11A closer look at d1 and d2
2 elements determine d1 and d2
A measure of the moneyness of the option.The
distance between the exercise price and the stock
price
S0 / Ke-rt
Time adjusted volatility.The volatility of the
return on the underlying asset between now and
maturity.
12Example
Stock price S0 100 Exercise price K 100 (at
the money option) Maturity T 1 year Interest
rate (continuous) r 5 Volatility ? 0.15
ln(S0 / K e-rT) ln(1.0513) 0.05
?vT 0.15
d1 (0.05)/(0.15) (0.5)(0.15) 0.4083
N(d1) 0.6585
European call 100 ? 0.6585 - 100 ? 0.95123 ?
0.6019 8.60
d2 0.4083 0.15 0.2583
N(d2) 0.6019
13Relationship between call value and spot price
For call option, time value gt 0
14European put option
- European call option C S0 N(d1) PV(K) N(d2)
- Put-Call Parity P C S0 PV(K)
- European put option P S0 N(d1)-1
PV(K)1-N(d2) - P - S0
N(-d1) PV(K) N(-d2)
Risk-neutral probability of exercising the option
Proba(STgtX)
Delta of call option
Risk-neutral probability of exercising the option
Proba(STltX)
Delta of put option
(Remember N(x) 1 N(-x)
15Example
- Stock price S0 100
- Exercise price K 100 (at the money option)
- Maturity T 1 year
- Interest rate (continuous) r 5
- Volatility ? 0.15
N(-d1) 1 N(d1) 1 0.6585 0.3415
N(-d2) 1 N(d2) 1 0.6019 0.3981
European put option - 100 x 0.3415 95.123 x
0.3981 3.72
16Relationship between Put Value and Spot Price
For put option, time value gt0 or lt0
17Dividend paying stock
- If the underlying asset pays a dividend,
substract the present value of future dividends
from the stock price before using Black Scholes. - If stock pays a continuous dividend yield q,
replace stock price S0 by S0e-qT. - Three important applications
- Options on stock indices (q is the continuous
dividend yield) - Currency options (q is the foreign risk-free
interest rate) - Options on futures contracts (q is the risk-free
interest rate)
18Black Scholes Merton with constant dividend yield
The partial differential equation(See Hull 5th
ed. Appendix 13A)
Expected growth rate of stock
Call option
Put option
19Options on stock indices
- Option contracts are on a multiple times the
index (100 in US) - The most popular underlying US indices are
- the Dow Jones Industrial (European) DJX
- the SP 100 (American) OEX
- the SP 500 (European) SPX
- Contracts are settled in cash
- Example July 2, 2002 SP 500 968.65
- SPX September
- Strike Call Put
- 900 - 15.601,005 30 53.501,025 21.40 59.80
- Source Wall Street Journal
20Fundamental determinants of option value
Call value Put Value
Current asset price S Delta ? 0 lt Delta lt 1 ? - 1 lt Delta lt 0
Striking price K ? ?
Interest rate r Rho ? ?
Dividend yield q ? ?
Time-to-maturity T Theta ? ?
Volatility Vega ? ?
21Example
22The Greeks
- Delta
- Gamma
- Theta
- Vega (not a Greek)
- Rho
23Delta
- Sensitivity of derivative value to changes in
price of underlying asset - Delta ?f / ?S
- As a first approximation ?f Delta x ?S
- In example, for call option f 10.451 Delta
0.637 - If ?S 1 ?f 0.637 ? f 11.088
- If S 101 f 11.097
error because of convexity
Binomial model Delta (fu fd) / (uS
dS) European optionsDelta call e-qT
N(d1)Delta put Delta call - 1
Forward Delta 1 Call 0 lt Delta lt 1 Put
-1 lt Delta lt 0
24Calculation of delta
25Variation of delta with the stock price for a call
26Delta and maturity
27Delta hedging
- Suppose that you have sold 1 call option (you are
short 1 call) - How many shares should you buy to hedge you
position? - The value of your portfolio is
- V n S C
- If the stock price changes, the value of your
portfolio will also change. - ?V n ?S - ?C
- You want to compensate any change in the value of
the shorted option by a equal change in the value
of your stocks. - For small ?S ?C Delta ?S
- ?V 0 ? n Delta
28Effectiveness of Delta hedging
29Gamma
- A measure of convexity
- Gamma ?Delta / ?S ?²f / ?S²
- Taylor df fS dS ½ fSS dS²
- Translated into derivative language
- ?f Delta ?S ½ Gamma ?S²
- In example, for call f 10.451 Delta
0.637 Gamma 0.019 - If ?S 1 ?f 0.637 ½ 0.019 ? f 11.097
- If S 101 f 11.097
30Variation of Gamma with the stock price
31Gamma and maturity
32Gamma hedging
- Back to previous example.
- We have a delta neutral portfolio
- Short 1 call option
- Long Delta 0.637 shares
- The Gamma of this portfolio is equal to the gamma
of the call option - V n S C ??V²/?S² - Gammacall
- To make the position gamma neutral we have to
include a traded option with a positive gamma. To
keep delta neutrality we have to solve
simultaneously 2 equations - Delta neutrality
- Gamma neutrality
33Theta
- Measure time evolution of asset
- Theta - ?f / ?T
- (the minus sign means maturity decreases with the
passage of time) - In example, Theta of call option - 6.41
- Expressed per day Theta - 6.41 / 365 -0.018
(in example) - Theta -6.41 /
252 - 0.025 (as in Hull)
34Variation of Theta with the stock price
35Relation between delta, gamma, theta
Gamma
Theta
Delta
36Trading strategies
- A single option and a stock covered call,
protective put - Covered call S-C
- Protective put SP
- Spreads bull, bear, butterfly, calendar
- Bull C(X1) C(X2) X1ltX2
- Bear C(X1) C(X2) X1gtX2
- Butterfly C(X1) C(X3) 2C(X2)
X1ltX2ltX3 - Calendar C(T1)-C(T2) T1gtT2
- Combinations straddle, strips and straps,
strangle - Straddle CP
- Strip C 2P
- Strap 2CP
- Strangle C(X2)P(X1)
X1ltX2
37Protective Put
38Equity Linked Note
- (See Lehman Brother Equity Linked Note An
Introduction)
Equity Linked Note
Capital garantee
Bond
Equity Participation
Call option
39Equity Linked Note Example
- 5-year 100 principal protected ELN with 100
participation in the upside of the SP 500 index. - See Excel file.
40Covered Call
Profit
At maturity
Immediate
Stock Price
41Reverse Convertible
- Robeco Eerste Reverse Convertible op
beleggingsfonds - Van 17 februari tot 6 maart 2003 uur is het
mogelijk in te schrijven op de Robeco Reverse
Convertible op Robeco N.V. mrt 03/04 (Robeco
Reverse Convertible), uitgebracht door Rabo
Securities in samenwerking met Robeco. - De Robeco Reverse Convertible is een
obligatielening met een looptijd van één jaar
waarop een couponrente van 9 wordt gegeven,
hoger dan een gewone éénjaarslening. De
uitgevende instelling, Rabo Securities N.V.,
heeft aan het einde van de looptijd de keuze om
de obligatie af te lossen in contanten of af te
lossen in een van tevoren vastgesteld aantal
aandelen in het beleggingsfonds Robeco. Dit is
afhankelijk van de koers van het aandeel Robeco
N.V. Bijzondere omstandigheden daargelaten, zal
Rabo Securities kiezen voor een aflossing in
aandelen als de koers aan het einde van de
looptijd lager is dan die op 7 maart 2003. Het
aantal aandelen is gelijk aan de nominale inleg
gedeeld door de openingskoers van Robeco op 7
maart 2003. Hierdoor bestaat het risico voor de
belegger aan het einde van de looptijd aandelen
Robeco te ontvangen, die een lagere waarde
vertegenwoordigen dan de nominale inleg. Is de
koers per saldo gelijk gebleven of gestegen, dan
wordt de nominale inleg in contanten
teruggegeven. - .
42Portfolio insurance
- Use synthetic put option with dynamic hedging
- V S P same value as with put
- ?V ?S ?P same sensitivity to underlying
asset - (1 dPut) ?S
- V n S B n shares bond
- 1 dPut n
- Dynamic hedging
- LOR and the crash of October 19, 1987 see
Rubinstein 1999 - Illustration Excell worksheet PorfolioInsurance
43Bull Call Spread
44Bear Call Spread
45Butterfly
46Straddle
47Strip
48Strap
49Strangle