Distributed Hash Tables - PowerPoint PPT Presentation

About This Presentation
Title:

Distributed Hash Tables

Description:

Distributed Hash Tables David Tam Patrick Pang Presentation Outline What is DHT (Distributed Hash Table)? Why DHTs? Applications How lookup works? – PowerPoint PPT presentation

Number of Views:139
Avg rating:3.0/5.0
Slides: 27
Provided by: Patrick525
Category:

less

Transcript and Presenter's Notes

Title: Distributed Hash Tables


1
Distributed Hash Tables
  • David Tam
  • Patrick Pang

2
Presentation Outline
  • What is DHT (Distributed Hash Table)?
  • Why DHTs?
  • Applications
  • How lookup works?
  • Alternatives to DHTs
  • Performance Routing
  • Performance Load Balancing
  • Security Routing Attack
  • Security Inconsistent Behaviour
  • Comparison to Other Facilities
  • Current Research Projects
  • Conclusion

3
What is DHT?
Distributed application
data
get (key)
put(key, data)
Distributed hash table
  • DHT provides the information look up service for
    P2P applications.
  • Nodes uniformly distributed across key space
  • Nodes form an overlay network
  • Nodes maintain list of neighbours in routing
    table
  • Decoupled from physical network topology

(Figure adopted from Frans Kaashoek)
4
Why DHTs?
  • Why Middleware?
  • Simplifies the development for large-scale
    distributed Apps
  • Better security and robustness
  • Simple API
  • Why Do We Need DHTs?
  • Simplifies the development for large-scale
    distributed Apps
  • Better security and robustness
  • Simple API
  • Exploits P2P resources

5
Applications
  • Anything that requires a hash table
  • Databases, FSes, storage, archival
  • Web serving, caching
  • Content distribution
  • Query indexing
  • Naming systems
  • Communication primitives
  • Chat services
  • Application-layer multi-casting
  • Event notification services
  • Publish/subscribe systems ?

6
How lookup works?
0
Example Chord Stoica et. al.
1
15
Finger Table for Node 2
2
14
3
start interval succ.
3 3,4) 5
4 4,6) 5
6 6,10) 7
10 10,2) 10
13
4
12
5
11
10
6
7
9
8
7
How lookup works?
0
Example Chord
1
15
Finger Table for Node 10
2
14
3
start interval succ.
11 11,12) 12
12 12,14) 12
14 14,2) 14
2 2,10) 2
13
4
12
5
11
10
6
7
9
8
8
How lookup works?
0
Example Chord
1
15
Finger Table for Node 10
2
14
3
start interval succ.
11 11,12) 12
12 12,14) 12
14 14,2) 14
2 2,10) 2
13
4
12
5
11
10
6
7
9
8
9
How lookup works?
0
Example Chord
1
15
Finger Table for Node 14
2
14
3
start interval succ.
15 15,0) 15
0 0,2) 1
2 2,6) 2
6 6,13) 7
13
4
12
5
11
10
6
7
9
8
10
How lookup works?
0
Example Chord
1
15
Finger Table for Node 14
2
14
3
start interval succ.
15 15,0) 15
0 0,2) 1
2 2,6) 2
6 6,13) 7
13
4
12
5
11
10
6
7
9
8
11
How lookup works?
0
Example Chord
1
15
2
14
3
Now Node 2 can retrive information for key 0 from
Node 1.
4
12
5
11
10
6
7
9
8
12
Alternatives to DHTs
  • Distributed file system
  • Centralized lookup
  • P2P flooding queries

(Figures adopted from Frans Kaashoek)
13
Performance -- Lookup
  • Purpose -- to locate a target node
  • Each step, try to get closer to locating target
    node
  • Ask a closer neighbour
  • Performance scalability tied directly to
    lookup algorithm
  • 2 Aspects to Scalability
  • size of routing table O(log N)
  • lookup path length O(log N)
  • 2 Aspects to Performance
  • Path latency
  • Lookup path length ( hops)
  • 3 Techniques
  • proximity lookup
  • proximity neighbour selection
  • geographic layout

14
Performance -- Load Balancing
  • Issues
  • Hot-spots
  • Content
  • Lookup
  • Heterogeneous nodes paths
  • System flux
  • Solution
  • Replication is the key
  • Also good for fault-tolerance
  • Cache lookup answers backwards along path

15
Security Incorrect Lookup (1)
  • When asked for the next hop, give a wrong
    answer

0
Finger Table for Node 2
1
15
start interval succ.
3 3,4) 5
4 4,6) 5
6 6,10) 7
10 10,2) 10
2
14
3
13
4
12
5
11
Node 2 to Node 10 Please tell me how to reach
key 0 .
10
6
7
9
8
16
Security Incorrect Lookup (2)
  • When asked for the next hop, give a wrong
    answer

0
Finger Table for Node 10
1
15
start interval succ.
11 11,12) 12
12 12,14) 12
14 14,2) 14
2 2,10) 2
2
14
3
13
4
12
5
11
Node 2 to Node 10 Please tell me how to reach
key 0 . Node 10 answers ask Node 14
10
6
7
9
8
17
Security Incorrect Lookup (3)
  • When asked for the next hop, give a wrong
    answer

0
Finger Table for Node 14
1
15
start interval succ.
15 15,0) 15
0 0,2) 1
2 2,6) 2
6 6,13) 7
2
14
3
13
4
12
5
11
Node 2 to Node 14 Please tell me how to reach
key 0 . Node 14 answers ask Node 10
10
6
7
9
8
18
Security Incorrect Lookup (4)
  • Solution Sit and Morris
  • Define verifiable system invariant
  • Allow the querier to observe lookup progress
  • Our idea how this can be implemented
  • Concretely, using an integral monotonically
    decreasing quantity to implement the idea of
    progress.
  • The concept of monotonically decreasing
    quantity has been used in program construction
    guaranteeing total correctness. Parnas

19
Security Inconsistent Behaviour
  • Inconsistent Behaviour, i.e., lie intelligibly
  • Sybil attack Kaashoek

Solution 1 public key solution
20
Security Inconsistent Behaviour
  • Inconsistent Behaviour, i.e., lie intelligibly
  • Sybil attack Kaashoek

Solution 1 public key solution Solution 2
Byzantine Protocol
Byzantine Generals Problem How to find out the
traitors among the Generals? Lamport
21
Security Inconsistent Behaviour
  • Inconsistent Behaviour, i.e., lie intelligibly
  • Sybil attack Kaashoek

Solution 1 public key solution Solution 2
Byzantine Protocol
Byzantine Generals Problem How to find out the
traitors among the Generals? Lamport
22
Security Inconsistent Behaviour
  • Inconsistent Behaviour, i.e., lie intelligibly
  • Sybil attack Kaashoek

Solution 1 public key solution Solution 2
Byzantine Protocol
Byzantine Generals Problem How to find out the
traitors among the Generals? Lamport
23
Comparison to Other Facilities
Facility Abstraction Easy Use/Prg Scalability Load-Balance
DHT high high high yes
Centralized Lookup medium medium low no
P2P flooding queries medium high low no
Distributed FS low medium medium no
Facility Fault-Tolerance Self-Org Admin
DHT high yes low
Centralized Lookup low no medium
P2P flooding queries depends yes low
Distributed FS medium no high
24
Research Projects
Iris security fault-tolerance US
Govt Chord circular key space Pastry
circular key space Tapestry hypercube space CAN
n-dimensional key space Kelips n-dimensional
key space DDS -- middleware platform for internet
service construction -- cluster-based --
incremental scalability
25
Summary
  • Good middleware platform
  • Exploits P2P networks
  • An exciting new research area

26
References
  • Lamport, Leslie et. al. The Byzantine Generals
    Problem
  • Sit, Emil, Morris, Robert. Security
    Considerations for Peer-to-Peer Distributed Hash
    Tables
  • Kaashoek, Frans. Distributed Hash Tables
    Building large-sacle, robust distributed
    applications
  • Stoica, Ion et. al. Chord A scalable
    peer-to-peer lookup service for Internet
    applications
  • Parnas, D. L. Connecting Theory to Practice
    Software Engineering Programme
Write a Comment
User Comments (0)
About PowerShow.com