Title: Characteristic values
1Characteristic values
- Char. eq of a system is
- det(sI-A)0
- the polynomial det(sI-A) is called char. pol.
- the roots of char. eq. are char. values
- they are also the eigen-values of A
- e.g.
- ? (s1)(s2)2 is the char. pol.
- (s1)(s2)20 is the char. eq.
- s1-1,s2-2,s3-2 are char. values or eigenvalues
2(No Transcript)
3gtgt MySysss(A,B,C,D) a x1 x2 x3 x1
-1 0 0 x2 0 -2 1 x3 0 0 -2 b
u1 x1 1 x2 0 x3 1 c
x1 x2 x3 y1 1 1 1 d u1
y1 0 Continuous-time model.
gtgt A-1 0 0 0 -2 1 0 0 -2 A -1 0
0 0 -2 1 0 0 -2 gtgt
B101 B 1 0 1 gtgt C1 1
1 C 1 1 1 gtgt D0 D 0
4gtgt tf(MySys) Transfer function 2 s2 8 s
7 --------------------- s3 5 s2 8 s 4 gtgt
zpk(MySys) Zero/pole/gain 2 (s2.707)
(s1.293) --------------------- (s1)
(s2)2 gtgt roots(2 8 7) ans -2.7071
-1.2929 gtgt roots(1 5 8 4) ans -2.0000
-2.0000 -1.0000
gtgt ssym('s') s s gtgt det(seye(3)-A) ans
(s1)(s2)2 gtgt eig(A) ans -1 -2
-2 gtgt DCinv(seye(3)-A)B ans
1/(s1)1/(s2)21/(s2) gtgt simplify(ans) ans
(2s28s7)/(s1)/(s2)2
5gtgt inv(seye(3)-A) ans 1/(s1), 0,
0 0,
1/(s2), 1/(s2)2 0,
0, 1/(s2) gtgt ilaplace(ans) ans
exp(-t), 0, 0
0, exp(-2t),
texp(-2t) 0, 0,
exp(-2t) gtgt tsym('t') t t gtgt
expm(At) ans exp(-t), 0,
0 0,
exp(-2t), texp(-2t) 0,
0, exp(-2t)
6gtgt expm(At)A ans -exp(-t),
0, 0
0,
-2exp(-2t), exp(-2t)-2texp(-2t)
0, 0,
-2exp(-2t) gtgt
Aexpm(At) ans -exp(-t),
0, 0
0,
-2exp(-2t), exp(-2t)-2texp(-2t)
0, 0,
-2exp(-2t) gtgt
Aexpm(At)-expm(At)A ans 0, 0, 0 0,
0, 0 0, 0, 0
7can
?
set t0
?No
can
?
v
at t0
?
v
8Solution of state space model
- Recall sX(s)-x(0)AX(s)BU(s)
- (sI-A)X(s)BU(s)x(0)
- X(s)(sI-A)-1BU(s)(sI-A)-1x(0)
- x(t)(L-1(sI-A)-1))Bu(t) L-1(sI-A)-1) x(0)
- x(t) eA(t-t)Bu(t)d teAtx(0)
- y(t) CeA(t-t)Bu(t)d tCeAtx(0)Du(t)
9S.S to T.F.
- X(s)(sI-A)-1BU(s)
- Y(s)C(sI-A)-1BU(s)DU(s)
- (D C(sI-A)-1B)U(s)
- ? T.F. H(s) D C(sI-A)-1B
- In matlab ss2tf
- eig
- roots
- poly
- use help to find out how to use these
10- In Matlab
- gtgt A0 1-2 -3
- gtgt B01
- gtgt C1 3
- gtgt D0
- gtgt n,dss2tf(A,B,C,D)
- n
- 0 3.0000 1.0000
- d
- 1 3 2
- gtgttf(n,d)
11But dont use those for hand calculation
- useX(s)(sI-A)-1BU(s)(sI-A)-1x(0)
- x(t)L-1(sI-A)-1BU(s)L-1 (sI-A)-1
x(0) - Y(s)C(sI-A)-1BU(s)DU(s)C(sI-A)-1x(0)
- y(t) L-1C(sI-A)-1BU(s)DU(s)CL-1
(sI-A)-1 x(0) - e.g.
u unit step
12Note T.F.D C(sI-A)-1B
13Eigenvalues, eigenvectors
- Given a nxn square matrix A, p is an eigenvector
of A if Ap?p - i.e. ? s.t. Ap ?p
- ?is an eigenvalue of A
- Example ,
- Let ,
- ?p1 is an e-vector, the e-value1
-
- Let ,
- ?p2 is also an e-vector, assoc. with the ? -2
14- In general, if ?, p is an e-pair for A,
- Ap ?p
- ?p-Ap0
- ?Ip-Ap0
- (?I-A)p0
- ? p?0 ? det(?I-A)0
- ? ? is a sol. of char. eq of A
- char. pol. of nxn A has degn
- ? A has n eigen-values.
- e.g. A , det(?I-A)(?-1)(?2)0
- ? ?11, ?2-2
15- If ?1 ??2 ??3?
- then the corresponding p1, p2, ? will be
linearly independent, i.e., the matrix - Pp1?p2 ? ?pn will be invertible.
- Ap1 ?1p1
- Ap2 ?2p2
- ?
- Ap1?p2 ? ?Ap1?Ap2 ? ?
- ?p1? ?p2 ? ?
-
- p1 p2 ?
-
16- ? APP?
- P-1AP ?diag(?1, ?2, ?)
- ?If A has n lin. ind. Eigenvectors then A can be
diagonalized. - Note Not all square matrices can be diagonalized.
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25Example
26(No Transcript)
27(No Transcript)
28- In Matlab
- gtgt A2 0 1
- 0 2 1
- 1 1 4
- gtgt P,Deig(A)
- P
- 0.6280 0.7071 0.3251
- 0.6280 -0.7071 0.3251
- -0.4597 -0.0000 0.8881
- p1 p2 p3
- D
- 1.2679 0 0
- 0 2.0000 0
- 0 0 4.7321
?1
?2
?3
29- If A does not have n lin. ind. e-vectors
- (some of the eigenvalues are identical),
- then A can not be diagonalized
- E.g. A
-
- det(?I-A) ?456?31152?210240?32768
-
- ?1-8
- ?2-16
- ?3-16
- ?4-16
- by solving (?I-A)P0
30- If we use P,Deig(A)
- get approximate but wrong answer
- Should use gtgtP,Jjordan(A)
- P
- 0.3750 0 1 0.625
- 0 8 4 0
- -0.375 0 0 0.375
- 0 16 9 0
- J
- -8 0 0 0
- 0 -16 1 0
- 0 0 -16 1
- 0 0 0 -16
a 3x3 Jordan block assoc. w/. ?-16
31More Matlab Examples
- gtgt ssym('s')
- gtgt A0 1-2 -3
- gtgt det(seye(2)-A)
-
- ans
- s23s2
-
- gtgt factor(ans)
- ans
- (s2)(s1)
32- gtgt P,Deig(A)
- P
- 0.7071 -0.4472
- -0.7071 0.8944
- D
- -1 0
- 0 -2
- gtgt P,Djordan(A)
- P
- 2 -1
- -2 2
- D
- -1 0
- 0 -2
33- A 0 1
- -2 -3
- gtgt exp(A)
- ans
- 1.0000 2.7183
- 0.1353 0.0498
- gtgt expm(A)
- ans
- 0.6004 0.2325
- -0.4651 -0.0972
- gtgt tsym('t')
-
- gtgt expm(At)
- ans
- -exp(-2t)2exp(-t),
exp(-t)-exp(-2t) - -2exp(-t)2exp(-2t), 2exp(-2t)-exp(-t)
?
34v
v
35Similarity transformation
same system as()
36Example
diagonalized
decoupled
37Invariance
38(No Transcript)
39Controllability
40Example
41- In Matlab
- gtgt Sctrb(A,B)
- gtgt rrank(S)
- If S is square (when B is nx1)
- gtgt det(S)
42Observability
43Example
44- In Matlab
- gtgt Vobsv(C,A)
- gtgt rrank(V)
- rank must n
- Or if single output (ie V is square), can use
- gtgt det(V)
- det must be nonzero
Lookfor controllability Lookfor observability
45(No Transcript)
46- Recall linear transformation
- Controllabilitybeing able to use u(t) to drive
any state to origin in finite time - Observabilitybeing able to computer any x(0)
from observed y(t) - After transformation, eigenvalues, char. poly,
char. eq, char. values, T.F., poles, zeros
un-changed, but eigenvector changed
47- Controllability is invariant under transf.
48(No Transcript)
49- Observability invariant under transf.
50(No Transcript)
51State Feedback
D
1 s
r
u
x
y
B
C
-
A
K
feedback from state x to control u
52(No Transcript)
53(No Transcript)
54- In Matlab
- Given A,B,C,D
- ?Compute QCctrb(A,B)
- ?Check rank(QC)
- If it is n, then
- ?Select any n eigenvalues(must be in complex
conjugate pairs) - ev?1 ?2 ?3 ?n
- ?Compute
- Kplace(A,B,ev)
ABk will have eigenvalues at
55- Thm Controllability is unchanged after state
feedback. - But observability may change!