Neural Network - Perceptron - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Neural Network - Perceptron

Description:

Variant of Network. Variety of Neural Network. Feedforward Network Perceptron. Recurrent Network - Hopfield Network. Network – PowerPoint PPT presentation

Number of Views:308
Avg rating:3.0/5.0
Slides: 29
Provided by: software78
Category:

less

Transcript and Presenter's Notes

Title: Neural Network - Perceptron


1
Neural Network - Perceptron
  • ??? ?????
  • Control Information Process Lab
  • ???

2
Variant of Network
  • Variety of Neural Network
  • Feedforward Network Perceptron
  • Recurrent Network - Hopfield Network
  • ??? ??? ???? ?? Network
  • Optimization Problem? ??
  • Competitive Network - Hamming Network
  • Feedforward Recurrent Network
  • ??? ??? Hamming distance? ??? ?? Network
  • Target ????
  • Recurrent Layer
  • Layer with Feedback
  • ???? ??

3
Hopfield Network Example
  • W w11 w12 w13
  • w21 w22 w23
  • w31 w32 w33
  • b b1 b2 b3T
  • P1 -1 1 -1T(banana)
  • P2 -1 -1 1T(pineapple)
  • T1 -1 1 -1T, T2 -1 -1 1T

4
Hamming Network Example
  • W1 P1T P2TT, b R RT, (R ??? ??)
  • W2 1 -e- e 1, 0lt elt1/s-1
  • (s Recurrent Layer? Neuron ??)

5
Single Neuron Perceptron - definition
  • The Perceptron is a binary classifier.
  • Single Neuron Perceptron

6
Perceptron - Algorithm
  • Learning Rule Perceptron
  • e t o (t target, o output, e error)
  • W W eX W (t o)X
  • b b e b (t o)
  • ???? ?? Weight, Bias ?? ???.

7
Single Neuron Perceptron example1(AND)
  • X 1 1 -1 -1
  • 1 -1 1 -1
  • O 1 -1 -1 -1
  • Simulation Result1
  • Initial Weight 0 0
  • Initial Bias 0
  • Iteration Number 3
  • Weight 2 2
  • Bias -2
  • Simulation Result2
  • Initial Weight -1.5 -1.5
  • Initial Bias -10
  • Iteration Number 4
  • Weight 4.5 4.5
  • Bias -4

8
ADALINE Network Algorithm
  • ADAptive LInear NEuron
  • Perceptron?? ??
  • Transfer Function Hard Limit vs Linear
  • Algorithm(Least Mean Square)
  • W(k1) W(k) 2ae(k)pT(k)
  • b(k1) b(k) 2ae(k)

9
ADALINE Network example1(AND)
  • X 1 1 -1 -1
  • 1 -1 1 -1
  • O 1 -1 -1 -1
  • Simulation Result1
  • Initial Weight 0 0
  • Initial Bias 0
  • a 0.5
  • Iteration Number 2
  • Weight 0.5 0.5
  • Bias -0.5
  • Simulation Result2
  • Initial Weight -1.5 -1.5
  • Initial Bias -10
  • a 0.5
  • Iteration Number 2
  • Weight 0.5 0.5
  • Bias -0.5

10
ADALINE Network example1(AND)
  • Simulation ? ????
  • ??? a? ??
  • a? ?? ??
  • a? ??? ?? ?? ??
  • error? ? ?? ???? ??? ???
  • ADALINE? ?????
  • Simulation Result4
  • Initial Weight 0 0
  • Initial Bias 0
  • a 0.1
  • Iteration Number 162
  • Weight 0.5 0.5
  • Bias -0.5
  • Simulation Result3
  • Initial Weight 0 0
  • Initial Bias 0
  • a 1.2
  • Weight -5.2 -5.2e153
  • Bias 5.2e153

11
ADALINE Network example2(XOR)
  • Linearly Separable
  • ???? ?? ??? ?
  • AND Problem
  • Not Linearly Separable
  • ???? ?? ??? ? ?
  • XOR Problem
  • ADALINE Network?? ?? ???
  • ?? ??1 - Multi Neuron ??
  • ????2 - Multi Layer ??

12
ADALINE Network example2(XOR)
  • ????1. Multi Neuron ??
  • Target? ??? ???.
  • Ex) 1, 0 -gt 00, 01, 10, 11
  • Simulation ??
  • Initial Weight 1 2-1 -5
  • Initial Bias 3-2, a 0.5
  • Iteration Number 2
  • W 0 00 0, b 00
  • ??? - ? ?? ??? ? ??? ??
  • ? ????2. Multi Layer Perceptron ??

13
Multi-Layer Perceptron - Characteristic
  • MLP? ???
  • Not Linear Separable ?? ??, ?? ???
  • ??? ?? ? ????, ??? ??? ??

14
Multi-Layer Perceptron Algorithm1
  • BackPropagation
  • Forward Propagation
  • Backward Propagation
  • (Sensitivity)

3. Weight Bias Update
15
Multi-Layer Perceptron Variable
  • Weight, Bias
  • Rand ??? ??? ? ??
  • Hidden Layer Neuron
  • ??? ??? ??(HDNEU)
  • HDNEU? ???? ??? ?? ?? ??
  • Alpha
  • Steepest Descent Method??? ?? ??
  • Stop Criteria
  • ???? Algorithm??? ??? ??? ??? ???
  • Mean Square Error? ???

16
Multi-Layer Perceptron example2(XOR)
  • HDNEU 20
  • a 0.1
  • Stop Criteria 0.005
  • Iteration Number 480
  • MSE 4.85e-3
  • Elapsed Time 113.65sec

17
Multi-Layer Perceptron example3(sine Function)
  • BP Algorithm
  • HDNEU 20
  • a 0.2
  • Stop Criteria 0.005
  • Iteration Number 3000
  • 3000?? ?? ? ?
  • 4710?? ??
  • MSE 0.0081
  • Elapsed Time 739sec
  • ?? ??? ?? ? 7.76sec

18
Multi-Layer Perceptron Algorithm2
  • MOmentum BackPropagation
  • Backpropagation Algorithm Low Pass Filter
  • Weight, Bias Update
  • Variable
  • Gamma(?) ??????? pole

19
Multi-Layer Perceptron example3(sine Function)
  • MOBP Algorithm
  • HDNEU 20
  • a 1
  • ? 0.9
  • Stop Criteria 0.005
  • Iteration Number 625
  • MSE 0.005
  • Elapsed Time 150sec

20
Multi-Layer Perceptron Algorithm3
  • Conjugate Gradient BackPropagation
  • ??? ??? Conjugate Gradient Method ??
  • ??? ??????? ????? ??
  • Variable
  • a, ? ???
  • HDNEU, Stop Criteria
  • Algorithm
  • Step1. Search Direction( )
  • Step2. Line Search(

    )
  • Step3. Next Search Direction(
    )
  • Step4. if Not Converged, Continue Step2

21
Multi-Layer Perceptron example3(sine Function)
  • CGBP Algorithm
  • HDNEU 20
  • Stop Criteria 0.005
  • Iteration Number 69
  • MSE 0.0046
  • Elapsed Time 22sec

22
Multi-Layer Perceptron example3(sine Function)
  • HDNEU 20
  • Stop Criteria 0.0005
  • Iteration Number 125
  • MSE 0.0005
  • Elapsed Time 37sec

23
Multi-Layer Perceptron Local Minima
  • Global Minima ??? ???
  • LMS Algorithm? ??? Global Minima ??
  • Local Minima ??? ???
  • BP Algorithm? Global Minima ?? ? ?
  • ?? ?? ?????? ???
  • HDNEU 10
  • Stop Criteria 0.001
  • Iteration Number 3000
  • MSE 0.2461
  • Elapsed Time 900sec

24
Multi-Layer Perceptron Over Parameterization
  • Over Parameterization
  • ??????? ??? ?? ??? ??? ?????? ?? ?, ?? ???? ???
    ?? ???? ? ?? ?????? ??? ???? ?
  • Generalization Performance(??? ??)
  • ?? ???? ?? ?? ??? ?? ?????? ??? ???? ?

25
Multi-Layer Perceptron Scaling
  • ?? ??? attribute? 01??? ??? ??? ?
  • ?? ???? Scaling? ?, ?????? ????
  • ? ?? ?? ?? ???? Scaling ??.
  • Nearest Neighbor??? normalize ??? ??
  • ???? Target ?? Scaling ??
  • Target ?? ??? ????? Scaling ??
  • Ex) ???? ??
  • ?? ?????????????? ??? ???

Origin Data 34780 31252 39317
7 1 2
34 32 33 20
23 24
Modification Data 0.4374 0
0 1 0
0.1667 1 0
0.5 0 0.25 1
26
Multi-Layer Perceptron Scaling
  • ???? ?? Simulation
  • HDNEU 20, Stop Criteria 0.01, Max Iteration
    Number 1000
  • Case1. Not Scaling
  • Iteration Number 1000, Train Set MSE
    11,124,663, Test Set MSE 20,425,686
  • Case2. Scaling
  • Iteration Number 1000, Train Set MSE
    11,124,663, Test Set MSE 20,425,686
  • Case3. Target Scaling
  • Iteration Number 6, Train Set MSE 0.008628,
    Test Set MSE 0.0562

27
Multi-Layer Perceptron Overfitting
  • Overfitting
  • Stop Criteria? ???? ?? ???? ?? ???? ??? ?????
    Weight, Bias? ????? ?? ???? ??? ??? ??? ??? ???
    ???? ?? ???.

? Issue 1. Stop Criteria? ??? ????
???? 2. HDNEU? ? ?? ?????
  • Stop Criteria 0.01 / 0.001
  • Test Set MSE 0.0562 / 0.1697

28
Reference
  • Machine Learning, Tom Mitchell, McGraw Hill.
  • Introduction to Machine Learning, Ethem Alpaydin,
    MIT press.
  • Neural Network Design, Martin T.Hagan, Howard
    B.Demuth, Mark Beale, PWS Publishing Company.
  • Neural Networks and Learning Machine, Simon
    Haykin, Prentice Hall.
Write a Comment
User Comments (0)
About PowerShow.com