Title: Analyzing Data from Small N Designs using Multilevel Models
1Analyzing Data from Small N Designs using
Multilevel Models
- Eden Nagler
- The Graduate Center, CUNY
- David Rindskopf, Ph.D
- The Graduate Center, CUNY
2Overview/Intro
- What is our current work?
- Where did we start?
- How does HLM fit into this framework?
32 Initial Datasets
- Stuart, R.B. (1967). Behavioral control of
overeating. Behavior Research Therapy, 5,
(357-365). - Dicarlo, C.F. Reid, D.H. (2004). Increasing
pretend toy play of toddlers with disabilities in
an inclusive setting. Journal of Applied Behavior
Analysis, 37(2), (197-207).
4Stuart (1967)
5Stuart (1967) Procedures for Getting data into
HLM
6Stuart (1967) Procedures for Getting data into
HLM
7Stuart (1967) Level-1 dataset
8Stuart (1967) Level-2 dataset
9Stuart (1967) HLM (Linear model)
- Linear Model
- POUNDS p0 p1(MONTHS12) e
10Stuart (1967) HLM Linear Model Estimates
- Final estimation of fixed effects
- Standard Approx.
- Fixed Effect Coefficient Error
T-ratio d.f. P-value - --------------------------------------------------
-------- - For INTRCPT1,P0
- INTRCPT2, B00 156.439560 5.053645 30.956 7
0.000 - For MONTHS12 slope, P1
- INTRCPT2, B10 -3.078984 0.233772 13.171 7
0.000 - --------------------------------------------------
-------- - The outcome variable is POUNDS
- --------------------------------------------------
-------- - POUNDSij 156.4 3.1(MONTHS12) eij
11Stuart (1967) HLM Quadratic Model
- Quadratic Model
- POUNDS p0 p1(MONTHS12) p2(MON12SQ)e
12Stuart (1967) HLM Quadratic Model Estimates
- Final estimation of fixed effects
- Standard Approx.
- Fixed Effect Coefficient Error T-ratio d.f.
P-value - --------------------------------------------------
--------- - For INTRCPT1, P0
- INTRCPT2, B00 158.833791 5.321806 29.846 7
0.000 - For MONTHS12 slope, P1
- INTRCPT2, B10 -1.773039 0.358651 -4.944 7
0.001 - For MON12SQ slope, P2
- INTRCPT2, B20 0.108829 0.021467 5.070 7
0.001 - --------------------------------------------------
--------- - The outcome variable is POUNDS
- --------------------------------------------------
--------- - POUNDSij 158.8 1.8(MONTHS12) 0.1(MON12SQ)
eij
13Stuart (1967) HLM Linear vs. Quadratic Model
Stuart (1967) Actual Data
Linear Model Prediction
Quadratic Model Prediction
14Dicarlo Reid (2004)
15Dicarlo Reid (2004) Level-1 dataset
16Dicarlo Reid (2004) Level-2 dataset
17Dicarlo Reid (2004) HLM Simple Model
- Simple Model
- FREQRND p 0 p1(PHASE) e
18Dicarlo Reid (2004) HLM Simple Model
Estimates
- Level-1 Model Level-2 Model
- logL P0 P1(PHASE) P0 B00 R0
- P1 B10 R1
- --------------------------------------------------
-------- - Final estimation of fixed effects (Unit-specific
model) - Standard Approx.
- Fixed Effect Coefficient Error
T-ratio d.f. P-value - -------------------------------------------------
--------- - For INTRCPT1,P0
- INTRCPT2, B00 -0.769384 0.634548 -1.212 4
0.292 - For PHASE slope,P1
- INTRCPT2, B10 2.516446 0.278095 9.049 4
0.000 - -------------------------------------------------
--------- - LN(FREQRNDij) -0.77 2.52(PHASE) eij
19Dicarlo Reid (2004) HLM Simple Model
Estimates
- LOG(FREQRNDij) B00 B10(PHASE) eij
For PHASE0 (BASELINE) LOG(FREQRNDij)
B00 FREQRNDij exp(B00)
For PHASE1 (TREATMENT) LOG(FREQRNDij) B00
B10 FREQRNDij exp(B00B10)
exp(B00)exp(B10)
Estimates B00 -0.77 B10 2.52
For PHASE0 (BASELINE) FREQRNDij exp(B00)
exp(-0.77)
0.46
For PHASE1 (TREATMENT) FREQRNDij exp(B00B10)
exp(-0.772.52) exp(1.75) 5.75
20In conclusion
- Other issues weve encountered and explored
- Issues weve encountered, but not yet explored
- Issues weve not yet encountered nor explored