Title: Charles E. Skupniewicz1
1Fleet Numerical Meteorology Oceanography
Center FNMOC Operational Aerosol Modeling and
Derived Products 23WAP/19NWP June 2009
Charles E. Skupniewicz1 Torsten Duffy1 Douglas
L. Westphal2 Cynthia A. Curtis2 Ming Liu2 1
Operations Department, Fleet Numerical
Meteorology and Oceanography Center Monterey,
California, USA 2 Marine Meteorology Division,
Naval Research Laboratory Monterey,
California, USA
Fleet Numerical
Supercomputing Excellence for Fleet Safety and
Warfighter Decision Superiority
2FNMOC Models and Applications
Ocean Acoustic Forecasting
Aircraft Routing
Automated High Seas / Wind Warnings
Visibility/Dust Forecasts
Aerosol Models
Optimum Track Ship Routing
Electro-Optical Forecasts
Global Model
Mesoscale Models
Ocean Models
Search and Rescue
Target Weapon Systems
Ice Forecasts
CEEMS
Ensemble Models
Tropical Cyclone Forecasts
Long-Range Planning
WRIP
Ballistic Wind Computations
3Impact of Aerosol Plumes on Navy Activities
Chinese Dust and Korean Smoke, 8 April, 2000
Korea
4Navy Aerosol Modeling Different Goals /
Different Approaches
- Climate Approach Utilize first principles
- Concerned with climate change and drift
- Low-resolution weather
- Theoretically based
- Trace gasses, chemistry
- Aerosol direct, indirect, and semi-direct
effects - Produce monthly or seasonal averages of column
integrated properties, e.g. AOD - Derive sensitivities
- Navy Forecasting Approach Pragmatic
- Concerned with onset and cessation of events
- High-resolution weather
- More diagnostic and empirically based
- Aerosol direct effects
- Produce instantaneous forecasts of visibility
- Surface-centric
5Navy Aerosol Forecasting Approach
- Predict events as weather phenomena emphasizing
sources and transport - Simulate aerosols that
impact visibility dust smoke sea salt
sulfate - Develop operational capability
(practical) - Utilize real-time data streams -
Use nested models to cover the large range of
scales
6NAAPS Navy Aerosol Analysis and Prediction
System
Purpose Forecasts aerosol concentrations Statu
s Operational, 4X day Input NOGAPS, dust
source DB, FLAMBE (smoke), MODIS Aerosol
Optical Depth (AOD) Species Dust, Smoke,
Sulfate, SO2, Sea salt Units Mass
concentration Horizontal resolution 1 degree,
360 X 180 grid Vertical resolution 20 m, 200 m
inc. to 2 km, 1 km inc. to 16 km Output
Filter FAROP (Forecast of Aerosol Radiative and
Optical Properties) Output Visibility, AOD,
extinction, scattering, asymmetry parameter,
phase function, species partition for
extinction Distribution Ocean data analysis
(SST), tactical decision aids, forecaster web
products, customer download (GRIB)
2007, Witek, M. L., P. J. Flatau, P. K. Quinn,
and D. L. Westphal, Global sea-salt modeling
Results and validation against multicampaign
shipboard measurements, J. Geophys. Res., 112,
D08215, doi10.1029/2006JD007779.
7FLAMBE Fire Locating and Modeling of Burning
Emissions
Purpose Determine real-time smoke fluxes Input
GOES, MODIS Output Fire parameters
Location (lat, lon)
Smoke flux, g m -2 s -1 Horizontal
res.GOES 4 km MODIS 1 km Temporal res.
GOES 30 min., MODIS 2X Day Next step use
foreign geostationary satellites
Fire detections for 2006092012
2004, Reid, J. S., E. M. Prins, D. L. Westphal,
C. C. Schmidt, K. A. Richardson, S. A.
Christopher, T. F. Eck, E. A. Reid, C. A. Curtis,
and J. P. Hoffman Real-time monitoring of South
American smoke particle emissions and transport
using a coupled remote sensing/box-model
approach, Geophys. Res. Lett., 31, L06107,
doi10.1029/2003GL018845.
8Dust Source Database (DSD)
Version Area Data sources Status
NAAPS Global USGS FY99 NAAPS Global USGS, TOMS
AI, and surface wx reports FY00 DSD v0.1 East
Asia USGS, maps, reports, and sfc. wx.
reports FY04 DSD v1.1 East Asia DSD including DEP
4Q FY09 DSD v1.2 SW
Asia DSD including DEP FY03 DSD v1.2.8 SW
Asia Updates based on field reports and DEP FY08
DSD v1.3 N. Africa DSD including DEP
FY10
DSD v0.1
DSD v1.1
9NAVDAS-AOD NRL Atmospheric Variational Data
Assimilation System Aerosol Optical Depth
Purpose Data assimilation for aerosol
optical depth (3-d
Var) Status Operational 3Q09, 4x
daily Input NRL Level 3 MODIS
Over-Ocean AOD
(6-h data window)
Next step Over-land and CALIPSO Future
input NPP, NPOESS, AVHRR, MetOp, MSG, MTSAT,
AATSR,
GOES-R Output Aerosol analysis
and 3-d distribution of four species
error statistics
Temporal resolution 3 hourly
Distribution NAAPS and FAROP web
2008, Zhang, J., J. S. Reid, D. L. Westphal, N.
L. Baker, and E. J. Hyer, A system for
operational aerosol optical depth data
assimilation over global oceans, J. Geophys.
Res., 113, doi10.1029/2007JD009065.
10Data Assimilation Methodology
1) Convert NAAPS mass concentration to aerosol
optical depth 2) Two-D variational assimilation
of the optical depth field 3) Convert optical
depth to NAAPS three-D mass concentration (ill-pos
ed simple conditional scaling scheme used)
r .83
r .69
NAAPS
MODIS
MODIS
Next step 4D-VAR
NAAPS AOD (no assimilation)
NAAPS AOD (w/ assimilation)
11NAAPS Validation against AERONET
- (a) AERONET versus NAAPS for 5-month (January
May 2006) NAAPS without data assimilation - (b) AERONET versus NAAPS for 5-month
(JanuaryMay 2006) NAAPS run with AOD assimilation
2008, Zhang, J., J. S. Reid, D. L. Westphal, N.
L. Baker, and E. J. Hyer, A system for
operational aerosol optical depth data
assimilation over global oceans, J. Geophys.
Res., 113, doi10.1029/2007JD009065.
12Current Real-Time Verification of NAAPS
Sede Boker, Israel, February 13 March 4, 2007
Optical Depth ?
13FAROP Forecast of Aerosol Radiative and Optical
Properties
Purpose Calculates Optical Properties Status O
perational, 4X day Input NOGAPS, NAAPS Physics
Extinction Mass extinction efficiencies
with RH effects for sulfate, smoke, and
salt Scattering Mass scattering efficiencies
Asymmetry parameter Measurements and
theory Phase function Heney-Greenstein function
Optical depth Vertical integral of
extinction Slant path range Contrast
transmittance Output 3D visibility,
extinction (km-1), scattering (km-1), asymmetry
parameter, phase function, species partition
for extinction on pressure/flight
levels Column AOD (visible) for each species
Frequencies 19 wavelengths, 5 bands in UV,
Vis, NIR, MWR and IR Work in progress
performance surfaces - slant path visual range
(nm)
14NAAPS Forecast Example
15Surface Visibility Example
16MCSST Screening with NAAPS
17Tactical Mission Support
Extinction, scattering, asymmetry parameter,
phase function, species partitioning used to
calculate slant path transmissivity, as a
function of - Altitude /Sensor/Target - Field
Of View - Probability of Detection
Detection Ranges / Best Attack Axis ( FOVs)
Thermal Crossover Times / Polarity (for multiple
targets)
Uses realistic target models and backgrounds
18Regional Model (COAMPS) Dust Example
COAMPS 31-h forecast of dust mass load (µg m-2)
0700 UTC 10 October, 2001
MODIS DEP 0634 UTC 10 October, 2001
DSD allows prediction of individual plumes
19FNMOC Operational Aerosol Modeling and Derived
Products