MATH for SCIENCE Scientific Notation - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

MATH for SCIENCE Scientific Notation

Description:

MATH for SCIENCE Scientific Notation Scientists ~ A. Deal with: Some very large numbers Some extremely small numbers These numbers can be quite cumbersome to work with. – PowerPoint PPT presentation

Number of Views:39
Avg rating:3.0/5.0
Slides: 14
Provided by: TeacherB5
Category:

less

Transcript and Presenter's Notes

Title: MATH for SCIENCE Scientific Notation


1
MATH for SCIENCE Scientific Notation
  • Scientists
  • A. Deal with
  • Some very large numbers
  • Some extremely small numbers
  • These numbers can be quite cumbersome to work
    with. To
  • make it easier scientists frequently use
    Scientific Notation.
  • B. Scientific Notation
  • A numerical shorthand frequently used for writing
    very large and extremely small numbers.
  • C. Converting Decimal format to Scientific
    Notation format
  • Scientific Notation sets up numbers with
  • a. Only the leading, non-zero digit/number to the
    left of the decimal point
  • in the units place.
  • b. All the remaining numbers are placed to the
    right of the decimal point.
  • c. Then, that number is multiplied by 10n.

2
  • d. The power/exponent n will correspond
    to
  • 1. the number of places.
  • 2. the direction the decimal point was
    moved.
  • e. The power n is
  • 1. positive () when the original number is
    greater than 1
  • 2. negative (-) when the original number is less
    than 1.
  • f. For numbers greater than 1
  • 1. count the number of places the decimal point
    was
  • moved to the left until you have only one
    non-zero
  • number/digit to the left of the decimal point.
  • 2. that number becomes the power/exponent that
    goes to
  • the upper right of the 10n.

3
  • g. Examples
  • Moving the Decimal Pt. Answer
  • i. 98765 9.8765 9.8765 x 104
  • 4 3 2 1
  • ii. 123 1.23 1.23 x 102
  • 2 1
  • iii. 4680 4.680 4.680 x 103
  • 3 2 1

4
h. For numbers less than 1
  • i. count the number of places the
    decimal point was moved to the right until you
    have only one non-zero number/digit to the left
    of the decimal point.
  • ii. count the number of places the
    decimal point was moved to the right until you
    have only one non-zero number/digit to the left
    of the decimal point.
  • iii. Examples
  • Moving the Decimal Pt. Answer
  • 0.00012 0.0001.2 1.2 x 10 -4
  • 1 2 3 4
  • 0.0000000345 0.00000003.45 3.45 x 10 -8
  • 1
    2 3 4 5 6 7 8
  • 0.067 0.06.7 6.7 x 10 -2
  • 1
    2

5
D. Converting Scientific Notation format to
Decimal format
  • 1. For numbers with 10n
  • a. Move the decimal point to the right to
    make the number bigger (greater than 1).
  • b. When you move the decimal point and
    there are no
  • numbers left, fill the counting loops in with
    zeros.
  • 2. Examples
  • Moving the Decimal Pt. Answer
  • 7.43 x 105 7.43000. 743,000.
  • 1 2 3 4 5
  • 2.153 x 102 2.15.3 215.3
  • 1 2
  • 6.8 x 104 6.8000. 68,000.
  • 1 2 3 4

6
  • 3. For numbers with 10-n
  • Move the decimal point to the left
    to
  • make the number smaller (less than
    1).
  • 4. Examples
  • Moving the Decimal Pt. Answer
  • 3.75 x 10 -2 03.75 0.0375
  • 2 1
  • 8.4 x 10 -5 .00008.4 0.000084
  • 5 4 3 2 1
  • 1.26 x 10 -3 .001.26 0.00126
  • 3 2 1

7
II. Computations with Scientific
Notation When multiplying or dividing
with two or more numbers in
Scientific Notation format, the process is done
in two stages.
  • A. Multiplication
  • 1. Stage 1 has 2 steps
  • a. Step 1 Multiply the two leading
    numbers together.
  • b. Step 2 Multiply the base 10
    numbers together.
  • (Remember, this means you just add the
    powers/exponents.)
  • c. Example
  • (2.5 x 103) (5.0 x 102)
  • (2.5 x 5.0) (103 x 102)
  • 12.5 x 105

8
  • 2. Stage 2 has 2 steps
  • These two steps are determined by which format,
    decimal or Scientific
  • Notation, is required for the answer.
  • Decimal Format Scientific Notation
    Format
  • Step 3 Move the decimal point the number Step
    3 Take the decimally formatted first
  • of places and the direction
    indicated number and change it to
  • by the x 10n exponent.
    Scientific Notation.
  • Step 4 Fill in the blank loops/spaces with
    Step 4 Multiply the number from step 3
  • zeros. with the base 10 number from step
  • 12.5 x 105 12.5 x 105
  • 12.50000. (1.25 x 101) (105)
  • 1 2 3 4 5
  • 1,250,000. 1.25 x 106

9
B. Examples
  • 1. (3.3 x 10 -2) (4.5 x 105)
  • (3.3 x 4.5) (10 -2 x 105)
  • 14.85 x 103
  • Decimal Format Scientific Notation Format
  • 14.85 x 103 14.85 x 103
  • 14.850. (1.485 x 101) (103)
  • 1 2 3
  • 14,850. 1.485 x 104
  • 2. (8.2 x 10-3) (3.6 x 10-2)
  • (8.2 x 3.6) (10-3 x 10-2)
  • 29.52 x 10-5
  • Decimal Format Scientific Notation Format
  • 29.52 x 10-5 29.52 x 10-5
  • .00029.52 (2.952 x 101) (10-5)
  • 5 4 3 2 1
  • 0.0002952 2.952 x 10-4

10
  • 3. (6.95 x 104) (2.3 x 10-7)
  • (6.95 x 2.3) (104 x 10-7)
  • 15.985 x 10-3
  • Decimal Format Scientific Notation
    Format
  • 15.985 x 10-3 15.985 x 10-3
  • .015.985 (1.5985 x 101) (10-3)
  • 3 2 1
  • 0.015985 1.5985 x 10-2

11
C. Division
  • 1. Stage 1 has 2 steps
  • Step 1 Divide the two leading numbers, then
  • Step 2 Divide the base 10 numbers
  • (Remember this means you just subtract the
    exponents/powers.)
  • 2. Stage 2 Convert the result of stage 1 to
    either or both decimal format /or
    Scientific Notation.
  • D. Examples
  • 1. 96.24 x 10-3 ? 96.24 x 10-3 ? 80.2 x 10-3
    (-5) 80.2 x 102 8.02 x 103 or 8020
  • 1.2 x 10-5 1.2 10-5
  • 2. 8.2 x 105 ? 8.2 x 105 ? 1.2 x 103 or
    1,200
  • 6.0 x 102 6.0 102
  • 3. 1.92 x 104 ? 1.92 x 104 ? 0.3048 x 107
    (3.048 x 10-1) (107) 3.048 x 106
  • 6.3 x 10-3 6.3 10-3
    or 3,048,000

12
  • E. Addition Subtraction
  • 1. To add or subtract any number in Scientific
    Notation, each number MUST
  • a. Be converted back to decimal format.
  • b. Line up the decimal point.
  • c. Then, add or subtract the numbers.
  • F. Examples
  • 1. 1.4 x 103 3.0516 x 104 9.723 x 102
  • 1.4 x 103 1400.
  • 3.0516 x 104 30516.
  • 9.723 x 102 972.3
  • 32,888.3 3.28883 x 104
  • 2. 4.0125 x 103 - 6.375 x 102
  • 4.0125 x 103 4012.5
  • 6.375 x 102 - 637.5
  • 3375.0 3.3750 x 103

13
  • 3. 1.3842 x 102 4.965 x 101 8.6 x 10-2
  • 1.3842 x 102 138.42
  • 4.965 x 101 49.65
  • 8.6 x 10-2 .086
  • 188.156 1.88156 x 102
  • 4. 7.385 x 10-2 - 8.126 x 10-3
  • 7.385 x 10-2 0.07386
  • 8.126 x 10-3 - 0.008126
  • 0.065724 6.5724 x 10-2
Write a Comment
User Comments (0)
About PowerShow.com