Rotational Dynamics - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Rotational Dynamics

Description:

Rotational Dynamics Consider a bicycle wheel to be a ring of radius 30 cm and mass 1.5 kg. Neglect the mass of the axle and sprocket. If a force of 20 N is applied ... – PowerPoint PPT presentation

Number of Views:315
Avg rating:3.0/5.0
Slides: 16
Provided by: bac3
Category:

less

Transcript and Presenter's Notes

Title: Rotational Dynamics


1
Rotational Dynamics
2
  • Consider a bicycle wheel to be a ring of radius
    30 cm and mass 1.5 kg. Neglect the mass of the
    axle and sprocket. If a force of 20 N is applied
    tangentially to a sprocket of radius 4.0 cm for
    4.0 s, what linear speed does the wheel achieve,
    assuming it rolls without slipping?
  • a. 3.0 m/s
  • b. 5.9 m/s
  • c. 7.1 m/s
  • d. 24 m/s

3
  • M 1.5 kg, R 0.30 m, F 20 N, r 0.04 m
  • t 4 s
  • Thin hoop, I MR2 0.135 kg m2
  • t Ia
  • t/I
  • 20 N 0.04 m/0.135 kg m2
  • 5.9 rad/s2
  • at 5.9 4 23.6 rad/s
  • v wr 23.6 rad/s 0.3 m 7.1 m/s

4
  • A wheel of moment of inertia of 5.00 kgm2 starts
    from rest and accelerates under a constant torque
    of 3.00 Nm for 8.00 s. What is the wheel's
    rotational kinetic energy at the end of 8.00 s?
  • a. 57.6 J
  • b. 64.0 J
  • c. 78.8 J
  • d. 122 J

5
  • I 5 kgm2, t 3.00 Nm , t 8.00 s
  • Krot ???
  • Krot ½ I w2 1/2(5)w2
  • To find omega, w, use w wo at.
  • How do we find alpha, a?
  • a t/I 3/5 0.6 rad/s2.
  • So, w wo at 0 0.6 8 4.8 rad/s
  • So,
  • Krot ½ I w2 1/2(5)w2 57.6 J

6
  • A solid sphere of mass 1.0 kg and radius 0.010 m
    is released from the top of a 1.0-m high 370
    inclined plane. What is the speed of the sphere
    when it reaches the bottom of the inclined plane?
  • a. 3.7 m/s
  • b. 4.4 m/s
  • c. 5.6 m/s
  • d. 6.3 m/s

7
  • M 1.0 kg, R0.010 m, y 1.0 m
  • V ???
  • First, lets set up the linear and rotational
    dynamics equations for this sphere.
  • F Ma
  • Mgsinq f Ma
  • Mgsinq Ma f
  • Ia
  • rf I a/r
  • f Ia/r2 2/5MR2 (a/R2) 2/5 Ma
  • Combining, Mgsinq Ma f 2/5 Ma
  • Gives a 5/7 g sinq 4.2 m/s2

8
  • v vo at 0 4.2 m/s2 t.
  • Find t from, x ½ a t2 ,
  • t (2x/a)1/2 (21.66 m/ 4.2 m/s2)1/2 0.89 s
  • So, v 3.7 m/s.

9
Rotational Dynamics
  • Torque, t I a
  • Work, W tT
  • Kinetic Energy of Rotation, K ½ I?2
  • Conservation of Energy
  • Angular Momentum, L I?
  • Conservation of Angular Momentum

10
Newtons 2nd Law
  • Linear motion
  • Fnet ma
  • Linear motion
  • tnet Ia

11
  • tnet Ia
  • tnet R(T2 T1)
  • I ½ MR2
  • R(T2 T1) ½MR2a

Fnet m1 a Fnet T1 - µN N m1g T1 -
µm1gm1a T1 m1a -µm1g

N
Accel. a
Ang. Accel a
f µN
T1
M,R
T2
Fnet m2 a Fnet m2g T2 m2g T2 m2a T2
-m2a m2g
Accel a
m1g
m2g
12

T1 m1a -µm1gT2 T1 ½MRaT2 -m2a m2g -m2a
m2g m1a µm1g ½MRa -(m2 m1)a g(m2 µm1)
½MRa/R (m2 m1 ½M)a g(µm1 m2) a g(µm1
m2)/(m2 m1 ½M)

N
Accel. a
Ang. Accel a
f µN
T1
M,R
T2
Accel a
m1g
m2g
13

a g(µm1 m2)/(m2 m1 ½M) Let M 0.2 kg, m11
kg, m20.5 kg, µ0.1 a 3.7 m/s2, What if we
ignore pulley? a 3.92 m/s2, 6.7 higher!

N
Accel. a
Ang. Accel a
f µN
T1
M,R
T2
Accel a
m1g
m2g
14
It took work to rotate the pulley
  • The pulley goes from zero angular speed to
    non-zero angular speed, ? at.
  • This means that the pulleys final kinetic
    energy, Kf , is ½ I?2
  • Kf ½(½ MR2)?2
  • The work-energy theorem, W ?K
  • W tT¼MR2?2

15
  • Torque and Angular Momentum
  • Recall, F ma m?v/?t ?p/?t, so making the
    correspondence to rotational motion,
  • t Ia I??/?t ?(I?)/?t ?L/?t, where
  • L I? angular momentum.
  • t ?L/?t
  • When no external forces are acting,
  • torque 0, so
  • ?L/?t 0 which means, Lf Lo or
  • If?f Io?o
Write a Comment
User Comments (0)
About PowerShow.com