Title: Video Coding For Compression . . . and Beyond
1Video Coding For Compression. . . and Beyond
Compression
- Bernd Girod
- Information Systems LaboratoryDepartment of
Electrical Engineering - Stanford University
2Bit Consumption of US Households
Bit equivalent, assuming state-of-the-art
compression, year 2000
Total for 70M households 230 Exabyte/year
Television 94
Radio 1.7
Recorded Music 0.4
Newspaper 0.0003
Books 0.0002
Magazines 0.0002
Home video 3.3
Video games 0.6
Internet 0.0003
Source UC Berkeley How much Information
3Desirable Compression Ratios
SDTV broadcasting 2 Mbps
ITU-R 601 166 Mbps
100 1
DSL 200 kbps
1,000 1
Dial-up modem, wireless link 20 kbps
10,000 1
4Outline
- Video compression state-of-the-art
- Beyond compression
- Rate-scalable video
- Wavelet video coding
- Error-resilient video transmission
- Unequal error protection
- Optimal scheduling for packet networks
- Distributed video coding
5Outline
- Video compression state-of-the-art
- Beyond compression
- Rate-scalable video
- Wavelet video coding
- Error-resilient video transmission
- Unequal error protection
- Optimal scheduling for packet networks
- Distributed video coding
6It has been customary in the past to transmit
successive complete images of the transmitted
picture. ... In accordance with this
invention, this difficulty is avoided by
transmitting only the difference between
successive images of the object.
7Motion-Compensated Hybrid Coding
Video in
Standards H.261, MPEG-1, MPEG-2, H.263, MPEG-4,
H.264/AVC
8Motion-Compensated Hybrid Coding
Video in
¼-pixel accuracy
Standards H.261, MPEG-1, MPEG-2, H.263, MPEG-4,
H.264/AVC
9Motion-Compensated Hybrid Coding
Video in
Standards H.261, MPEG-1, MPEG-2, H.263, MPEG-4,
H.264/AVC
10Motion-Compensated Hybrid Coding
Video in
Standards H.261, MPEG-1, MPEG-2, H.263, MPEG-4,
H.264/AVC
11Motion-Compensated Hybrid Coding
Video in
Generalized B-Frames
Standards H.261, MPEG-1, MPEG-2, H.263, MPEG-4,
H.264/AVC
12Rate-Distortion Optimized Coder Control
- Minimize Lagrangian cost function
- Strategy minimize Ji for each block i
separately, using a common Lagrange multiplier l
13Multiple Reference Frames in H.264/AVC
Mobile Calendar (CIF, 30 fps)
38
37
36
35
34
33
32
PSNR Y dB
31
30
29
PBB... with generalized B pictures
28
PBB... with classic B pictures
PPP... with 5 previous references
27
PPP... with 1 previous reference
26
0
1
2
3
4
R Mbit/s
14Multiple Reference Frames in H.264/AVC
Mobile Calendar (CIF, 30 fps)
38
37
36
35
34
33
32
PSNR Y dB
31
30
29
PBB... with generalized B pictures
28
PBB... with classic B pictures
PPP... with 5 previous references
27
PPP... with 1 previous reference
26
0
1
2
3
4
R Mbit/s
15Multiple Reference Frames in H.264/AVC
Mobile Calendar (CIF, 30 fps)
38
37
36
35
34
33
32
PSNR Y dB
31
30
29
PBB... with generalized B pictures
28
PBB... with classic B pictures
PPP... with 5 previous references
27
PPP... with 1 previous reference
26
0
1
2
3
4
R Mbit/s
16Outline
- Video compression state-of-the-art
- Beyond compression
- Rate-scalable video
- Wavelet video coding
- Error-resilient video transmission
- Unequal error protection
- Optimal scheduling for packet networks
- Distributed video coding
17Surprising Success of ITU-T Rec. H.263
What H.263 was developed for . . .
. . . and what is was used for.
??
Analog videophone
18Internet Video Streaming
Streaming client
DSL
Media Server
Internet
dial-up modem
wireless
- How to accommodate heterogeneous bit-rates?
- How to react to network congestion?
- How to mitigate late or lost packets?
19Fine Granular Scalability (FGS)
2dB gap
- H.264 with/without FGS option
- Foreman sequence (5fps)
20Wavelet Video Coder
Originalvideoframes
LH
LH
LLH
LLL
TemporalWavelet Transform
Spatial WaveletTransform
Embedded Quantization Entropy Coding
Taubman Zakhor, 1994 Ohm, 1994 Choi
Woods, 1999 Hsiang Woods, VCIP 99 . . .
and others
21Lifting
22MC Wavelet Coding vs. H.264/AVC
38
36
Non-scalable H.264/AVC
34
32
30
Luminance PSNR (dB)
28
26
Scalable MC 5/3 Wavelet
- Sequence Mobile CIF
- H.264/AVC
- high complexity RD control
- CABAC
- PBBPBBP . . .
- 5 prev/3 future reference frames
- data courtesy of M. Flierl
24
22
20
2.0
1.8
1.6
1.4
1.2
1.0
0.6
0.4
0.2
0.8
Taubman Secker, VCIP 2003courtesy D. Taubman
bit-rate (Mbps)
23Wavelet Synthesis with Lossy Motion Vector
Videoin
Videoout
Inverse Wavelet Transform
MC Wavelet Transform
Embedded Encoding
Decoder
Minimize JDlR
Embedded Encoding
Decoder
Motion Estimator
Minimize JDlR
Taubman Secker, ICIP03
24R-D Performance with Lossy Motion Vector
Taubman Secker, VCIP 2003courtesy D. Taubman
25Outline
- Video compression state-of-the-art
- Beyond compression
- Rate-scalable video
- Wavelet video coding
- Error-resilient video transmission
- Unequal error protection
- Optimal scheduling for packet networks
- Distributed video coding
26Priority Encoding Transmission (PET)
information symbols
block of packets
- Albanese, Blömer, Edmonds, Luby, Sudan,
1996 Davis Danskin, 1996 - Horn, Stuhlmuller, Link, Girod, 1999 Puri,
Ramchandran, 1999 - Mohr, Riskin, Ladner, 2000 Stankovic,
Hamzaoui, Xiong, 2002 - Chou, Wang, Padmanabhan, 2003 . . . and many
more . . .
27Packet Delay Jitter and Loss
pdf
e
(1-e)
loss
k
?
delay
28Smart Prefetching
Idea Send more important packets earlier to
allow for more retransmissions
Server
Client
Internet
Podolsky, McCanne, Vetterli 2000 Miao, Ortega
2000 Chou, Miao 2001
29Rate-Distortion Preamble
I
I
P
P
I
B
B
B
P
P
P
I
B
B
B
P
- Each media packet n is labeled by
- Bn size in bits of data unit n
- Ddn distortion reduction if n is decoded
- tn decoding deadline for n
30Rate-Distortion Preamble
I
I
P
B
P
P
I
B
B
P
P
I
B
B
B
P
- Each media packet n is labeled by
- Bn size in bits of data unit n
- Ddn distortion reduction if n is decoded
- tn decoding deadline for n
31Markov Decision Tree for One Packet
... N transmission opportunities before
deadline
32R-D Optimized Streaming Performance
PSNR dB
- Foreman
- 120 frames
- 10 fps, I-P-P-
- H.263 2 Layer SNR scalable
- 20 frame GOP
- Copy Concealment
- 20 loss forward and back
- G-distributed delay
- ? 10 ms
- µ 50 ms
- s 23 ms
- Pre-roll 400ms
Bit-Rate kbps
33Naive Coding Questions
- To achieve graceful degradation in case of
channel error for a digitally encoded signal, is
an embedded signal representation (aka layers,
aka data partitioning) always needed? - Can one, in general, send refinement information
for an analog (i.e. uncoded) signal transmission
over a noisy channel?
34Digitally Enhanced Analog Transmission
Analog Channel (uncoded)
- Forward error protection of the signal waveform
- Information-theoretic bounds Shamai, Verdu,
Zamir,1998 - Systematic lossy source-channel coding
35Forward Error Protection of Compressed Video
Analog channel (uncoded)
Any OldVideo Encoder
Video Decoder with Error Concealment
S
S
Error-Prone channel
Aaron, Rane, Girod, ICIP 2003
- Graceful degradation without a layered signal
representation
36Wyner-Ziv MPEG Codec
Rane, Aaron, Girod, VCIP 2004
37Graceful Degradation with Forward Error Protection
38Visual Comparison of Degradation at Same PSNR
Foreman 50 CIF frames _at_ symbol error rate 4 x
10-4
With FEC 1 Mbps 120 kbps (38.32 db)
With FEP 1 Mbps 120 kbps (38.78 db)
39Superior Robustness of FEP
Foreman 50 CIF frames _at_ symbol error rate 10-3
With FEC 1 Mbps 120 kbps (33.03 db)
With FEP 1 Mbps 120 kbps (38.40 db)
40Lossy Compression with Side Information
Source
Encoder
Decoder
Wyner, Ziv, 1976 For mse distortion and
Gaussian statistics, rate-distortion functions
of the two systems are the same.
Source
Encoder
Decoder
41Ultra-Low-Complexity Video Coding
42R-D Performance Ultra-Low-Complexity Video Coder
- Sequence Foreman
- WZ frames - even frames
- Key frames - odd frames
- Side information - motion compensated
interpolation of key frames
43Ultra-Low-Complexity Video Coder
Wyner-Ziv Codec 274 kbps, 39.0 dB
H263 Intraframe Coding 330 kbps, 32.9 dB
44Ultra-Low-Complexity Video Coder
Wyner-Ziv Codec 274 kbps, 39.0 dB
H263 I-B-I-B 276 kbps, 41.8 dB
45Stanford Camera Array
Courtesy Marc Levoy, Stanford Computer Graphics
Lab
46Stanford Camera Array
Courtesy Marc Levoy, Stanford Computer Graphics
Lab
47Light Field Compression
Wyner-Ziv, Pixel-Domain
JPEG-2000
Rate 0.11 bpp PSNR 39.9 dB
Rate 0.11 bpp PSNR 37.4 dB
48Conclusions
- Video compression is very important. . . but
there is more to video coding than compression - Rate-scalable video representations mc lifting
break-through - Robust video transmission
- Virtual priority mechanisms by packet scheduling
- RD gains easily larger than from super-clever
compression - Distributed video coding radically different
approach - Graceful degradation w/o layers
- Ultra-low-complexity coders
- Ubiquitous JDlR
49- Acknowledgments
- Anne M. Aaron
- Jacob Chakareski
- Philip A. Chou
- JDlR
- Markus Flierl
- Sang-eun Han
- Mark Kalman
- Marc Levoy
- Yi Liang
- Shantanu Rane
- David Rebollo-Monedero
- Andrew Secker
- David Taubman
- Thomas Wiegand
- Xiaoqing Zhu
- Rui Zhang
50Progress is a wonderful thing,if only it would
stop . . .
51(No Transcript)