Massive neutrinos Dirac vs. Majorana - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Massive neutrinos Dirac vs. Majorana

Description:

Massive neutrinos Dirac vs. Majorana Niels Martens Supervisor: Dr. J.G. Messchendorp Outline Introduction Helicity Chirality Parity violation in weak interactions ... – PowerPoint PPT presentation

Number of Views:113
Avg rating:3.0/5.0
Slides: 27
Provided by: NielsM
Category:

less

Transcript and Presenter's Notes

Title: Massive neutrinos Dirac vs. Majorana


1
Massive neutrinosDirac vs. Majorana
  • Niels Martens
  • Supervisor Dr. J.G. Messchendorp

2
Outline
  • Introduction
  • Helicity
  • Chirality
  • Parity violation in weak interactions
  • Theory
  • SM massless lefthanded neutrinos
  • Massive neutrinos
  • Dirac mass
  • Majorana mass
  • Dirac-Majorana mass terms
  • Possible scenarios
  • Experiments
  • Neutrinoless double beta decay
  • Results Heidelberg-Moscow cooperation

3
Helicity Chirality
  • Helicity projection of spin in the direction of
    momentum
  • Ill-defined when m?0 (Lorentz transformation)
  • ? Chirality states (eigenstates of weak
    interaction) superposition of helicity states

4
Parity violation in weak interactions
  • Parity operation x ? -x
  • V ? -V
  • A ? A
  • Goldhaber experiment (1957) measuring neutrino
    helicity
  • Electron capture in 152Eu
  • Two co-linear events of opposite parity expected

5
Parity violation in weak interactions
P
  • Only lefthanded photons observed ? only
    lefthanded neutrinos
  • Later experiments only righthanded
    anti-neutrinos

6
Neutrinos in the Standard Model
  • Fermion spin-½
  • Massless
  • only lefthanded neutrinos, righthanded
    anti-neutrinos

7
Neutrinos in the standard model
  • Massless spin-½ particles are described by the
    Dirac eqation for massless particles

8
Massive neutrinos Dirac neutrino
  • Flavour oscillations ? (small) neutrino mass!!
  • How to incorporate this in SM/ extend SM?
  • Dirac mass
  • Boost can change handedness
  • coupling between two helicity states
  • A single four-component spinor

9
Massive neutrinos Dirac neutrino
  • Dirac mass term in Lagrangian
  • What other mass terms are possible?

10
Massive neutrinos Majorana neutrino
  • (2) Majorana mass
  • Neutrino is chargeless, so it can be its own
    antiparticle
  • ? mM couples particle and antiparticle

11
General case Dirac-Majorana-mass
  • (3) Dirac-Majorana mass term
  • Diagonalizing M gives two mass eigenvalues

12
Different scenarios
  • (a)
    pure Dirac case
  • ? (Dirac field)
  • pure
    Majorana case
  • ?

13
Different scenarios
  • (c) Seesaw model
  • Explains
  • light mass of neutrinos
  • the experimental fact that only lefthanded
    neutrinos couple to the weak interaction.

14
Related experiments
  • Tritium ß-decay
  • Flavor oscillations
  • Neutrinoless double ß-decay

15
Neutrinoless double ß-decay
  • ßdecay
  • Double ß--decay
  • Could any nucleus be used?
  • No
  • Single ß-decay must be forbidden
  • ?

16
Neutrinoless double ß-decay
  • Semi-empirical mass/Weizsäcker formula

17
Neutrinoless double ß-decay
  • 35 naturally occurring isotopes which decay via
    2ß-, all even-even

18
Neutrinoless double ß-decay
  • So how can 2ß- show that the neutrino is a
    majorana particle?

Neutrinoless double beta decay
X
19
Neutrinoless double ß-decay
  • 2 necessary conditions
  • Particle-antiparticle matching
  • ?
  • Helicity matching
  • ?
  • If neutrinoless double ß-decay occurs, the
    neutrino is a massive majorana particle.

Virtual neutrino line
20
Neutrinoless double ß-decay
  • Experimental signatures
  • Two e- from same place at same time
  • Daughter nucleus (Z2,A)
  • Neutrinoless case sharp defined kinetic energy
    of electrons, instead of continuous spectrum

21
Neutrinoless double ß-decay
  • Theoretical uncertainty (76Ge) 1.5 lt M lt 4.6
  • Half-lives
  • ß from seconds to 105 y
  • 2?ßß 1020 y
  • 0 ?ßß gt 1025 y
  • m? 50 meV ? 100 kg needed for 1 event/y

22
Neutrinoless double ß-decay
  • Experimental difficulties
  • Count rate How to measure T1/2 beyond 1025 y!?
  • Source strength expensive!
  • Background Cosmic rays, 2?ßß, natural
    radioactive decay
  • Energy resolution

23
Heidelberg-Moscow Experiment
Source strength ? 11,0 kg enriched 76Ge Source
detector
Background ? find a mountain and dig a hole
Enormous half-lives ? experiment run from 1990
till 2003 (but, stability then becomes a problem)
24
Heidelberg-Moscow experiment
25
Conclusions
  • None yet
  • Since neutrinos do have mass, the SM has to be
    extended.
  • Theoretically, massive neutrinos can have a Dirac
    and/or Majorana nature.
  • Reliable 0?ßß observations would prove that the
    neutrino is a Majorana particle and give the
    neutrino mass, but at the moment 0?ßß-experiments
    face many difficulties.

26
Bibliography
  • C. Giunti C.W. Kim, Fundamentals of neutrino
    physics and astrophycis, Oxford University Press,
    2007
  • K. Zuber, Neutrino Physics, IOP Publishing, 2004
  • H.V. Klapdor-Kleingrothaus et al. / Physics
    Letters B 586 (2004) 198212
Write a Comment
User Comments (0)
About PowerShow.com