Introducci - PowerPoint PPT Presentation

1 / 84
About This Presentation
Title:

Introducci

Description:

Title: Sistema de evaluaci n y clasificaci n de la facultad. Author: Soporte T cnico Last modified by: Pilar Gomez Created Date: 1/13/2005 12:36:05 AM – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 85
Provided by: Sopo66
Category:

less

Transcript and Presenter's Notes

Title: Introducci


1
Introducción a Wavelets (ondeletas)
ANALISIS MULTIRESOLUCION
 
   
http//www.jhu.edu/signals/phasorlecture2/indexph
asorlect2.htm
2
Transformadas espectrales
Transformada de Fourier
u 0,1,2, ..., N-1
3
PARTE REAL
PARTE IMAGINARIA
4
Transformada Hartley
Nucleo o Kernel
5
Transformada Discreta Coseno (DCT)
6

7

8
(No Transcript)
9
Espectro de Fourier
f(x) F(u)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
STFT (Short time Fourier transform)
Or windowed Fourier transform
g(t-r) Window
15
(No Transcript)
16
Spectrogram
  • The square modulus of the windowed Fourier
    transform is the spectrogram of a signal

17
(No Transcript)
18
Ventanas
Ventana de Hamming
Ventana rectangular
19
A segment of a vowel extracted with a
rectangular window
The amplitude spectrum using a rectangular
window Calculated using Matlab abs(fft(sig))
20
  
  The amplitude spectrum using a hamming
window. Calculated using Matlab
abs(fft(hamming(512) . sig))
A segment of a vowel extracted with a hamming
window. Calculated using Matlab hamming(512) .
sig
21
This is the basis for most computer generated
spectrograms (display pixel intensity on a log
scale by limiting the dynamic range to about
60-80 dB).
22
Ejemplos de espectrogramas
  • (Ver MATLAB)

23
Ejemplos de espectrogramas
Here is the sum of two parallel linear chirps
with its spectrogram.
24
Here is the sum of two hyperbolic chirps and its
spectrogram.
25
  • Introducción a Wavelets

26
four frequency components at different times.
The interval 0 to 250 ms is a sinusoid of 300 Hz,
and the other 250 ms intervals are sinusoids of
200 Hz, 100 Hz, and 50 Hz
w(t)exp(-a(t2)/2)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
Wavelet de Morlet
41
The mexican hat wavelet
42
                                                Gráficos de varios tipos distintos de wavelets. (a) Wavelet de Haar, (b) Wavelet de Daubechies, (c) Wavelet de Morlet. (Cortesía de Ofer Levi, Universidad de Stanford)
43
Escala
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
Ejemplos de escalogramas (CWT)Continuous Wavelet
Transform
These signals are drawn from a database signals
that includes event related potentials of normal
people, and patients with Alzheimer's disease.
50
(No Transcript)
51
En un espectrograma
52
En un escalograma
53
Suma de dos señales CHIRP hiperbólicas
Windowed fourier transform (Espectrograma)
Continuous Wavelet Transform CWT (Escalograma)
54
Aplicaciones
55
Análisis de señales
  • Oxímetro de Pulso

56
(No Transcript)
57
(No Transcript)
58
  • Representación frecuencia-tiempo para
  • Datos muestreados
  • (b) FT
  • (c) WFT
  • (d) CWT

59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
DWT (Discrete Wavelet Transform)
64
A friendly guide to wavelets
  • http//perso.orange.fr/polyvalens/clemens/wavelets
    /wavelets.htmlsection7

65
Ahora dejamos fija la Ondeleta y lo que vamos
comprimiendo por etapas es la señal
66
  • El análisis multiresolución se consigue a través
    de filtrado y submuestreo de la señal original.
  • La exploración en tiempo se consigue a través de
    operaciones de convolución (filtrado digital).

67
Sub-band coding
68
Sub-band coding algorithm
69
(No Transcript)
70
Transformada inversa
71
(No Transcript)
72
2-D Discrete Wavelet Transform
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
Wavelet Packet
80
(No Transcript)
81
En resumen
CWT
DWT
2D - DWT
82
... En resumen
CWT
DWT
2D - DWT
83
  • http//www.gisdevelopment.net/technology/ic/techip
    0003a.htm

COMPRESION DE LA DCT A WAVELETS
http//www.acm.org/crossroads/xrds6-3/sahaimgcodin
g.htmlFig6
84
Espectrograma
Write a Comment
User Comments (0)
About PowerShow.com