Title: Introducci
1Introducción a Wavelets (ondeletas)
ANALISIS MULTIRESOLUCION
http//www.jhu.edu/signals/phasorlecture2/indexph
asorlect2.htm
2Transformadas espectrales
Transformada de Fourier
u 0,1,2, ..., N-1
3 PARTE REAL
PARTE IMAGINARIA
4Transformada Hartley
Nucleo o Kernel
5Transformada Discreta Coseno (DCT)
6 7 8(No Transcript)
9Espectro de Fourier
f(x) F(u)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14STFT (Short time Fourier transform)
Or windowed Fourier transform
g(t-r) Window
15(No Transcript)
16Spectrogram
- The square modulus of the windowed Fourier
transform is the spectrogram of a signal
17(No Transcript)
18Ventanas
Ventana de Hamming
Ventana rectangular
19A segment of a vowel extracted with a
rectangular window
The amplitude spectrum using a rectangular
window Calculated using Matlab abs(fft(sig))
20 The amplitude spectrum using a hamming
window. Calculated using Matlab
abs(fft(hamming(512) . sig))
A segment of a vowel extracted with a hamming
window. Calculated using Matlab hamming(512) .
sig
21This is the basis for most computer generated
spectrograms (display pixel intensity on a log
scale by limiting the dynamic range to about
60-80 dB).
22Ejemplos de espectrogramas
23Ejemplos de espectrogramas
Here is the sum of two parallel linear chirps
with its spectrogram.
24Here is the sum of two hyperbolic chirps and its
spectrogram.
25 26 four frequency components at different times.
The interval 0 to 250 ms is a sinusoid of 300 Hz,
and the other 250 ms intervals are sinusoids of
200 Hz, 100 Hz, and 50 Hz
w(t)exp(-a(t2)/2)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40Wavelet de Morlet
41The mexican hat wavelet
42 Gráficos de varios tipos distintos de wavelets. (a) Wavelet de Haar, (b) Wavelet de Daubechies, (c) Wavelet de Morlet. (Cortesía de Ofer Levi, Universidad de Stanford)
43Escala
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49Ejemplos de escalogramas (CWT)Continuous Wavelet
Transform
These signals are drawn from a database signals
that includes event related potentials of normal
people, and patients with Alzheimer's disease.
50(No Transcript)
51 En un espectrograma
52 En un escalograma
53Suma de dos señales CHIRP hiperbólicas
Windowed fourier transform (Espectrograma)
Continuous Wavelet Transform CWT (Escalograma)
54Aplicaciones
55Análisis de señales
56(No Transcript)
57(No Transcript)
58- Representación frecuencia-tiempo para
- Datos muestreados
- (b) FT
- (c) WFT
- (d) CWT
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63DWT (Discrete Wavelet Transform)
64A friendly guide to wavelets
- http//perso.orange.fr/polyvalens/clemens/wavelets
/wavelets.htmlsection7
65Ahora dejamos fija la Ondeleta y lo que vamos
comprimiendo por etapas es la señal
66- El análisis multiresolución se consigue a través
de filtrado y submuestreo de la señal original. - La exploración en tiempo se consigue a través de
operaciones de convolución (filtrado digital).
67 Sub-band coding
68Sub-band coding algorithm
69(No Transcript)
70Transformada inversa
71(No Transcript)
722-D Discrete Wavelet Transform
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79Wavelet Packet
80(No Transcript)
81En resumen
CWT
DWT
2D - DWT
82... En resumen
CWT
DWT
2D - DWT
83- http//www.gisdevelopment.net/technology/ic/techip
0003a.htm
COMPRESION DE LA DCT A WAVELETS
http//www.acm.org/crossroads/xrds6-3/sahaimgcodin
g.htmlFig6
84Espectrograma