Title: Chapter 20 Complex variables
1Chapter 20 Complex variables
2Chapter 20 Complex variables
3Chapter 20 Complex variables
4Chapter 20 Complex variables
20.2 Cauchy-Riemann relation
A function f(z)u(x,y)iv(x,y) is differentiable
and analytic, there must be particular connection
between u(x,y) and v(x,y)
5Chapter 20 Complex variables
6Chapter 20 Complex variables
7Chapter 20 Complex variables
20.3 Power series in a complex variable
8Chapter 20 Complex variables
20.4 Some elementary functions
9Chapter 20 Complex variables
10Chapter 20 Complex variables
11Chapter 20 Complex variables
20.5 Multivalued functions and branch cuts
A logarithmic function, a complex power and a
complex root are all multivalued. Is the
properties of analytic function still applied?
(A)
(A)
(B)
(B)
12Chapter 20 Complex variables
Branch point z remains unchanged while z
traverse a closed contour C about some point. But
a function f(z) changes after one complete
circuit.
Branch cut It is a line (or curve) in the
complex plane that we must cross , so the
function remains single-valued.
13Chapter 20 Complex variables
14Chapter 20 Complex variables
(A)
(B)
15Chapter 20 Complex variables
20.6 Singularities and zeros of complex function
16Chapter 20 Complex variables
17Chapter 20 Complex variables
18Chapter 20 Complex variables
19Chapter 20 Complex variables
20Chapter 20 Complex variables
20.10 Complex integral
21Chapter 20 Complex variables
22Chapter 20 Complex variables
23Chapter 20 Complex variables
24Chapter 20 Complex variables
25Chapter 20 Complex variables
20.11 Cauchy theorem
26Chapter 20 Complex variables
27Chapter 20 Complex variables
28Chapter 20 Complex variables
20.12 Cauchy