Introduction to Nonlinear Optical (NLO) Polymerical Materials - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

Introduction to Nonlinear Optical (NLO) Polymerical Materials

Description:

Title: Introduction to Nonlinear Optical (NLO) Polymerical Materials Author: wu chengxun Last modified by: songhx Created Date: 12/17/2001 4:06:37 AM – PowerPoint PPT presentation

Number of Views:1041
Avg rating:3.0/5.0
Slides: 49
Provided by: wuche
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Nonlinear Optical (NLO) Polymerical Materials


1
Introduction to Nonlinear Optical (NLO)
Polymerical Materials
  • Wu Chengxun
  • College of Material Sci. Tech. Dong Hua Univ.

2
  • 21?????????????????????????,????????????????
    ???????,??????????????????????????????????,???????
    ?????,???????(??????????)????(?????)????????????(?
    ????)??????????
  • ????????????????????????

3
? ?????
1.1 ????????????
  • 1.1 .1 ?????????????????????????????????????????
    ??????????????????????
  • ??????????????????
  • 1.2 .2 ??????????
  • ????????
  • ??????????????
  • ??????????
  • ????
  • ????

4
  • 1960 Laser
  • Criteria necessary for NLO materials
  • Large nonlinear susceptibilities (?(2) or?(3)
    )
  • Ease of processing
  • Low absorption losses
  • High optical damage threshold, etc.

5
  • ?????(nonlinear optics, NLO)??????????????????
    ??????????
  • ????????,????????P?????????E????????,???????
  • P ?(1)E ?(2)EE ?(3)EEE
  • ???(2)????????? ,?????????????

6
NLO?????
  • NLO???????????????????????????????????????
    ???,??????????????????????????????????????????????
    ,???????????????????????????
  • NLO??????????????????????NLO??????????????
    ?

7
  • Nonlinear optics
  • P P(0) ?(1)E 1/2?(2)E E 1/6?(3)E E
    E ...
  • P --- the induced polarization
  • P(0)--- the permanent polarization
  • E --- electric field strength
  • ?(1)--- the linear susceptibility
  • ?(2) and?(3)--- the second- and third-order
    susceptibility( or the first and second order
    nonlinear susceptibility)

8
  • Molecular polarizabilities
  • µiµg,i aijEi ßijk EjEk ?ijklEjEkEl ...
  • µi --- induced dipole
  • µg,i ___ the ground state dipole moment
  • aij--- the linear polarizability tensor
  • ßijk --- the second-order polarizability or
    first-order hyper-polarizability
  • ?ijkl--- the third-order polarizability or
    second hyper-polarizability.

9
  • ???????
  • ???????
  • ??a?ß???????????????????????,ß?????????????????
    ?(1)??(2)??(2)???????????????????????
  • ??????????????????????????????????????(2)??????,?
    ??????,??????????????,??????????????????
  • ?????????????????

10
  • First order NLO effects
  • Second Harmonic
  • Optical parametric Oscillation
  • Linear electric-optic effect ( n n0 n2I)
  • Sum and difference freq. Generation
  • Optical rectification.

11
  • Second order NLO effects
  • Frequency tripling
  • Two-photon absorption
  • Coherent spectroscopy
  • Quadratic electro-optic
  • Four wave mixture

12
  • Optical Kerr effect( n2 3?(3)/4cn02)
  • Self-focusing
  • Self-phase modulation
  • The photo-refractive effect
  • Cascading of first order NLO effects for
    applications in second order NLO.

13
1.2 ?????????????
???? ?? ??
???(1) ??? ??,???
???(2 ??????(? ? 2? ) ???
???(2 ???( ? ? 0 )
???(2 ???( ?1 ?2 ?3 ) ?????
???(2 ????( ? ?1 ?2 ) ?????
???(2 Pockets??( ? 0 ? ) ?????
???(2) ??????( ? ? ? 3? ) ?????
???(2) ????????(? ?0 2? ) ???????????
???(2) Kerr??( ? 00 ? ) ??????
???(2) ?????( ? ? ? ? ) ????????????
???(2) ???( ?1 ?2 ?3 ?4 ) ????
14
1.3 ??????????
1.3.1 ??????
  • ?LiNbO3?KDP????????????
  • ????????????
  • ????????????-???????
  • ?????????

1.3.2 ??????
  • ?????
  • ??????
  • ???????????

15
  • Materials for?(2)
  • Noncentro-symmetry is required, otherwise?(2)
    0.
  • It has proved difficult to find materials
    with large NLO combined with low-enough linear
    and nonlinear losses.

16
  • Systematic studies have shown that conjugated
    organic molecules with large delocalized electron
    system show very large nonlinear optical effects.
  • The attachment of functional groups with
    electro-accepting and donating character at
    opposite ends of the conjugation bridge leads to
    an essentially one-dimensional charge transfer,
    which will give a very dominating value
    ßzzz(z-direction refers to the charge transfer
    direction), and all other tensor elements in ß
    can be neglected.

17
  • Basic molecular units and structures essential
    for NLO organic materials
  • The electron density of pbonds is much more
    mobile than that of the s bonds. The electron
    distribution can also be skewed by substituents,
    resulting in the hyper-polarizability in response
    to an externally applied electric field.

18
  • Two-level approx. Model
  • Highest occupied molecular orbit(HOMO) and
    lowest occupied molecular orbit (LOMO).
  • The resulting ßCT (CT --- Charge transfer)
    is a function of the energy gap between the two
    states, the oscilator strength of the CT
    transition, the dipole moment associated with
    that transition and the fundamental laser photo
    energy.

19
  • The equivalent internal field model of a free
    electron gas corresponding to the delocalized
    electron density of a conjugated system of length
    L ß L 3
  • An optimized NLO chromophore can then be expected
    to have an extended conjugated system (large L),
    a low-energy transition (long wavelength
    absorption) with a high extinction coefficient,
    and a large dipole moment between the excited and
    ground state electronic configurations (charge
    asymmetry) introduced by donor and acceptor
    groups.

20
  • The charge transfer molecules have a very
    asymmetric response to an applied electronic
    field. However, the presence of conjugation and
    donor an acceptor groups generally introduces a
    undesirable effect, the so-called transparency
    efficiency trade-off, also leads to a shift of
    the absorption edge towards longer wavelengths
    (red).

21
  • There are few rational strategies for
    optimizing?ijkl. Well-defined structure-properties
    relations for chromophores are still absent,
    although bond length alteration has recently been
    identified as one structural parameter for?ijkl.
  • Large ?(2) require noncentrosymmetric packing of
    the organic molecules.

22
  • Technological approaches
  • Polar arrangement of the molecules in single
    crystals or Langmuir-Blodgett films.
  • Chromophores as guests and polymers as hosts or
    sol-gels
  • Poling process
  • Films formed by molecular beam epitaxy (MBE)

23
  • ? Bridge benzene analogs
  • Donor
  • Amino,dialkylamine,diphenylamino,methoxy, ketone
    dithioacetal,julolidinyl,etc.
  • Acceptor
  • Nitro, cyano, dicyano-ethenyl,tricyanoethayl,3-(di
    cyanomethylidene)-2,3-dihydrobenzothiophen-2-ylide
    ne-1,1-dioxide,etc.

24
  • Molecular assembly
  • The symmetry reduction during crystal growth
    can be accomplished by either the introduction of
    molecular asymmetry or the incorporation of
    steric substituents into chromophore.

25
  • The incorporation of NLO molecules in polymers
  • Mixing, covalent linking (side chain, cross
    linked, main chain)
  • Corona poling, electrode poling.

26
  • Reqirements
  • High electro-optic coef.
  • No orientational relaxation at 80 Co over a few
    years.
  • No orientational relaxation at 250 Co over a
    short time
  • No degradation up to 350 Co
  • Low optical loss (lt 2dB/cm)
  • Good thin-film processability
  • Broadband transparency and low costs

27
1.4 ??????????
  • ???????????????????????,?80??????20?????????????
  • ???????????????????12????????????,??????????,????
    ????????????????,??????????????????????????

28
1.5 ?????
  • 1.5.1 ???????????????? ???,?????????????????????
    ?????????????
  • 1.5.2 ???????????????????,??????????
  • 1.5.3 ????????
  • 1. ?-?????
  • 2. ?????
  • 3. ???

29
  • ??????????????????????????????????????????????
    ???????,??????????????,????????????????,??????????
    ??,??????????
  • ??Tg??250??????????????????????

30
?????
  • NLO????????????????????????????????
  • ?????????????????????

???????????
31
???????
32
??????????????
  • ???????????????????????????,?????????NLO??
    ???????????????
  • ???????????????????,??????????????????????
    ???????????????????,?????????????????????????????

33
??????????????
  • ?????????(PI-NLO)??????NLO????????,????????
    ?????????????????????? ?
  • ????????????????????????????????????????????
    ???????????????????

34
X??????????
X?????????
35
X???????
  • X??????????????????,?????????,????????,??
    ??p??????????????????????
  • ????????????????????,?????????ß?????????,?
    ???X?????????????????????? ?

36
1,2-???-4,5-?????????
37
????(PAA)???????
  • ????????????????????????????????????????????
    ???,????????????????????????????????
  • ???????????????PAA????????????????????

38
PAA?????
PAA??????????
39
PAA?????????
  • ????????,??PAA???????????
  • (1) ?????????,????????????
  • (2) ???????????
  • (3) ?????(PMDAMPDA)?1.011.02?
  • (4) ?????1520??
  • (5) ?????4???

40
PI-NLO??????
????PI-1?????
41
????PI-2?????
42
PI-1?DSC?? PI-2?DSC??
  • ???????
  • PI-1?0.63dL/g
  • PI-2?0.75dL/g
  • Tg???

43
????PI-2?????
44
? ?????????
  • 2.1 ??????????
  • 1??????????
  • 2??????????
  • (1)Y??? (2)X???
  • 3? ????
  • 2.2 ??????????
  • 1? ????? 2??????
  • 3? ???
    4????????

45
? ?????????????
  • 3.1 ?????????????? ??
  • ????????????,??????????????,??????????
  • 3.2 ????????????
  • ???????????(PU/PI)????????????????
  • 3.3 ???????
  • ??????????,?????????
  • 3.4 ????????????
  • ?????????,?????????,????????????????

46
? ???????
4.1 ??????????????
?? ???????? ???????????
?????
????? ?????????? (EFISH) ????? ????? ??? ???????
????? ?????(HRS) ?????(ATR)??
?????? ????? ?????
47
???????
  • ???????F?????????????????
  • F 1-(AP/A0)
  • A0 ?AP??????????????????????
  • 1.?????,????F????????,???F???????????
    ???
  • 2. ??????????,???F???????????,???F???
    ???????????,?????????????

48
Thank you
Write a Comment
User Comments (0)
About PowerShow.com