Ranjit Jhala Rupak Majumdar - PowerPoint PPT Presentation

About This Presentation
Title:

Ranjit Jhala Rupak Majumdar

Description:

Bit-level Types for High-level Reasoning Ranjit Jhala Rupak Majumdar The Problem Bit-level operators in low-level systems code Why ? – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 58
Provided by: RJ3
Learn more at: https://goto.ucsd.edu
Category:

less

Transcript and Presenter's Notes

Title: Ranjit Jhala Rupak Majumdar


1

Bit-level Types
for
High-level Reasoning
  • Ranjit Jhala Rupak Majumdar

2
The Problem
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt 12 b tabpte
0xFFFFFFFC o p 0xFFC return
m(bo)gtgt2
  • Bit-level operators in low-level systems code
  • Why ?
  • Interact with hardware
  • Reduce memory footprint

3
The Problem
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt 12 b tabpte
0xFFFFFFFC o p 0xFFC return
m(bo)gtgt2
  • Bit-level operators in low-level systems code
  • Inscrutable to humans, optimizers, verifiers

4
Whats going on ?
32
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
5
Whats going on ?
20
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
12
20
6
Whats going on ?
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
12
20
32
7
Whats going on ?
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
12
20
8
Whats going on ?
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
12
20
30
2
9
Q How to infer complex information flow
to understand, optimize, verify code ?
mget (u32 p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
12
20
30
2
10
Plan
  • Motivation
  • Approach

11
Our approach (1) Bit-level Types
  • Bit-level Types
  • Sequences of
  • name,size pairs

12
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
13
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
14
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
15
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
16
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
17
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
18
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
19
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
20
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
return mb.addr o.addr
21
Our approach (2) Translation

Expressions ! Records Bit-ops ! Field accesses
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
return mb.addr o.addr
22
Our approach

Low-level operations eliminated bit-level
types translation
mget(p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
return mb.addr o.addr
Program can be understood, optimized, verified
23
Plan
  • Motivation
  • Approach
  • Bit-level types Translation
  • Key Bit-level type Inference
  • Experiences
  • Related work

24
Constraint-based Type Inference
Alices age a Bobs age b
22 54
  • Algorithm
  • 0. Variables for unknowns
  • 1. Generate constraints on vars
  • 2. Solve constraints

2a b 10 b 2006 - 1952
Remember these If Alice doubles her age, she
would still be 10 years younger than Bob,
who was born in 1952. How old are Alice
and Bob ?
25
Constraint-based Type Inference
  • Algorithm
  • 0. Variables for unknown
  • bit-level types of all program expressions
  • Generate constraints on vars
  • Solve constraints

26
Plan
  • Motivation
  • Approach
  • Bit-level types Translation
  • Key Bit-level type Inference
  • Constraint Generation
  • Constraint Solving
  • Experiences
  • Related work

27
Constraint Generation
  • Type variables
  • for each expression
  • p ?p
  • p0x1 ?p0x1
  • pte ?pte
  • ? ?

mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
28
Generating Zero Constraints
  • Mask
  • ?p0xFFC3112
  • ?p0xFFC10

020
02
12
31
1
0
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
29
Generating Zero Constraints
  • Shift
  • ?egtgt123120
  • e is p0xFFFFF000

20
31
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
30
Why are zeros special ?
x e
  • Consider assignment (value flows e
    to x)
  • Should x and e have same bit-level type?

K ?
x

K
?
e
  • Common idiom
  • k-bit values special case of k?-bit values
  • Equality results in unnecessary breaks
  • Zeros enable precise subtyping

subtypes()
31
Generating Inequality Constraints
  • Mask
  • ?p0xFFC112 ?p112

020
02
11
2
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
32
Generating Inequality Constraints
e
  • Shift
  • ?egtgt12190 ?e3112

12
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
31
egtgt12
19
0
33
Generating Inequality Constraints
  • Assignment
  • ?o ?p0xFFC
  • that is
  • ?o310 ?p0xFFC310

mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
34
Plan
  • Motivation
  • Approach
  • Bit-level types Translation
  • Key Bit-level type Inference
  • Constraint Generation
  • Constraint Solving
  • Experiences
  • Related work

35
Constraint Solutions
  • Solution is an assignment
  • A type variables ! bit-level types
  • A(?)ij subsequence of A(?) from bit i
    through j

12
1
31
5
2
  • A(?p)121 addr,10 wr,1
  • A(?p)312 idx,20 addr,10
  • A(?p)315 undefined

36
Constraint Solving Overview
  • Solution is an assignment
  • A type variables ! bit-level types
  • A(?ij) subsequence from bit i through j
  • A satisfies
  • zero Constraint ?ij
  • If A(?)ij i-j1
  • inequality Constraint ?ij ?ij
  • If A(?)ij A(?)ij
  • In both cases, A(?)ij must be defined

37
Constraint Solving Algorithm
  • Input Zero constraints z_1,,z_m
  • Inequality constraints c1,,cn
  • Output Assignment satisfying all constraints

A0 Initial asgn satisfying zero constraints
(details in paper)
A A0 for i in 1n A refine(A,ci) return A
  • refine(A,ci) adjusts A such that
  • ci becomes satisfied
  • earlier constraints stay satisfied
  • built using Split, Unify


38
Refine Split(A,?,k)
Throughout A, substitute
p,12 ?
A(?)
p,32
A Split(A,?,12)
and substitute
p,12-?
A(?)
f,12
e,20
f,12-?
where e , f are fresh
39
Refine Split(A,?,k)
  • Used to ensure A(?)ij is defined

Ensure A(?)112 is defined
A(?)
p,32
A Split(A,?,12)
11
A(?)
f,12
e,20
A Split(A,?,2)
11
2
A(?)
g,10
e,20
h,2
A(?)112 defined
40
Refine Unify(A,p,q)
Throughout A, substitute
p,?
q,?
41
Refine(A, ?3112 ?190)
0
19
A(?)190 undefined
12
31
A(?)
p 32
A(?)
r 12
10
q 10
A Split(A,?,191)
A(?)190

A(?)3112
A Unify(A,q,t)
42
Constraint Solving
  • Input Constraints
  • Output Assignment satisfying all constraints

A A0 for i in 1n A refine(A,ci) return A
  • Substitution (in Split, Unify)
  • ensures earlier constraints stay satisfied
  • most general solution found
  • Efficiently implemented using graphs


43
Plan
  • Motivation
  • Approach
  • Bit-level types Translation
  • Key Bit-level type Inference
  • Constraint Generation
  • Constraint Solving
  • Experiences
  • Related work

44
Experiences
  • Implemented bit-level type inference for C
  • pmap a kernel virtual memory system
  • Implements the code for our running example
  • mondrian a memory protection system
  • scull a linux device driver
  • (1-3 Kloc)
  • Inference/Translation takes less than 1s

45
Mondrian Witchel et. al.
  • Bit packing for memory and permission bits
  • 2600 lines of code, generated 775 constraints
  • Translated to program without bit-operations
  • 18 different bit-packed structures
  • 10 assertions provided by programmer
  • After translation, assertions verified using
    BLAST
  • 6 safe all require bit-level reasoning
  • Previously, verification was not possible
  • 4 false positives imprecise modeling of arrays

46
Cop outs (i.e. Future Work)
  • Truly binary bit-vector operations
  • x ltlt y, x y
  • Currently Value-flow analysis to infer constants
    flowing to y
  • Break into a switch statement
  • Flow-sensitivity
  • Currently SSA renaming
  • Arithmetic overflow
  • does a k-bit value spill over
  • Currently Assume no overflow
  • Path-sensitivity (value dependent types)
  • Type of suffix depends on value of first field
  • e.g. Instruction decoder for architecture
    simulator
  • Number/type of operands depends on opcode

47
Plan
  • Motivation
  • Approach
  • Bit-level types Translation
  • Key Bit-level type Inference
  • Constraint Generation
  • Constraint Solving
  • Experiences
  • Related work

48
Related Work
  • O Callahan Jackson ICSE 97
  • Type Inference
  • Gupta et. al. POPL 03, CC02
  • Dataflow analyses for packing bit-sections
  • Ramalingam et. al. POPL 99
  • Aggregate structure inference for COBOL

49
Conclusions
  • (Automatic) reasoning about Bit-operations hard
  • Structure bit-operations pack data into one word
  • Structure Inferred via Bit-level Type Inference
  • Structure Exploited via Translation to fields
  • Precise, efficient reasoning about Bit-operations

50
Thank you

51
Q How to infer complex information flow
to understand, optimize, verify code ?
  • Previous approaches model bitwise ops by
  • Uninterpreted functions
  • Imprecise
  • Logical axioms
  • Inefficient
  • Bit-blasting terms into 32/64-bits
  • Lose high-level relationships

52
Refine
  • Two basic operations split, unify
  • Split(A,?,ij) ensures A(?)ij is defined

A in A, substitute
Split(A,?,112)
p ?(111)
A(?)
p 32
where e , f are fresh
A(?)
f 12
e 20
A in A, substitute
f ?2
A(?)
g 10
e 20
h2
where g,h are fresh
53
Generating Zero Constraints
  • Mask
  • All but 1st bit are zero
  • ?p0x1311

031
mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
54
Our approach (2) Translation
  • Expressions ! Records
  • Bit-ops ! Field accesses

mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
return mo.addr p.addr
55
Our approach (2) Translation
  • Expressions ! Records
  • Bit-ops ! Field accesses

mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
56
Our approach (2) Translation
  • Expressions ! Records
  • Bit-ops ! Field accesses

mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
return mo.addr p.addr
57
Our approach (2) Translation
  • Expressions ! Records
  • Bit-ops ! Field accesses

mget (p) if (p 0x1 0)
error(permission) pte (p
0xFFFFF000)gtgt12 b tabpte 0xFFFFFFFC
o p 0xFFC return m(bo)gtgt2
if (p.rd 0)
pte.idx p.idx
b.addr tabpte.idx.addr
o.addr p.addr
return mo.addr p.addr
58
Constraint Solutions
  • Solution is an assignment
  • A variables ! bit-level types
  • A(?)ij subsequence of A(?) from bit i
    through j

12
1
31
5
2
  • A(?p)121 addr,10 wr,1
  • A(?p)312 idx,20 addr,10
  • A(?p)315 undefined

59
Bit-level Types
for
via
High-level Reasoning
  • Ranjit Jhala Rupak Majumdar
Write a Comment
User Comments (0)
About PowerShow.com