Title: Total Ionizing Dose Effect on Programmable Input Configurations
1Total Ionizing Dose Effect on Programmable Input
Configurations
- J. J. Wang, R. Chan, G. Kuganesan, N. Charest, B.
Cronquist - Actel Corporation
2Outline
- Total Ionizing Dose Testing
- Input Threshold TID Testing Data
- Annealing Effect
- Failure Analysis and Mechanism
- Lesson Learned and TID Hardening
3Total Ionizing Dose Testing
- TM1019 Military Standard for TID testing (Fig 1)
Fig 1 TID testing flow
4DUT and Irradiation
- 0.25µm CMOS technology
- Commercial off-shore foundry
- VCCI/VCCA 5V/2.5V
- TTL I/O configuration
- Defense Microelectronic Activity (DMEA)
- Co-60 Source
- Dose Rate 1 krad(Si)/min (5)
- Room temperature irradiation
- Static biased irradiation
Fig 2 Picture showing Gamma-ray irradiator
5Parameter Measurement
Parameters Logic Design
1 Functionality All key architectural functions
2 ICC (ICCA/ICCI) DUT power supply
3 Input Threshold (VIL/VIH) Input buffers
4 Output Drive (VOL/VOH) Output buffers
5 Propagation Delay String of buffers, Clock to Q
6 Transition Characteristic D flip-flop output
- VIL defined as the start of low to high
transition - VIH defined as the start of high to low
transition - TTL trip point (average of VIL and VIH) 1.5V,
CMOS 2.5V
6Rad-induced Input Threshold Shift
Table 1 Lot B Pre- and Post-Irradiation VT (Net
0)
DUT Total Dose Pre-Irradiation Pre-Irradiation Post-Irradiation Post-Irradiation
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V)
B1 100 krad 1.25 1.48 1.26 1.53
B2 100 krad 1.24 1.48 2.29 2.52
B3 100 krad 1.25 1.47 1.25 1.47
B4 100 krad 1.25 1.49 1.23 1.51
B5 100 krad 1.25 1.47 2.32 2.55
- Five (A, B, C, D, E in chronological order) lots
from foundry X tested - 2 lots (B, C) show VIL/VIH switching from TTL to
CMOS - The number of events increases with total
accumulated dose and can be removed by annealing
Table 2 Lot C Pre- and Post-Irradiation VT (Net
0)
DUT Total Dose Pre-Irradiation Pre-Irradiation Post-Irradiation Post-Irradiation
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V)
C1 60 krad 1.24 1.51 1.38 1.45
C2 60 krad 1.25 1.52 1.22 1.53
C3 60 krad 1.25 1.51 1.24 1.48
C4 100 krad 1.25 1.52 1.23 1.49
C5 100 krad 1.24 1.51 2.41 2.67
C6 100 krad 1.23 1.50 1.24 1.56
C7 100 krad 1.25 1.51 1.26 1.48
C8 100 krad 1.26 1.52 1.41 1.57
7Post-Irradiation Input Threshold Switching from
TTL to CMOS
- Lot C is chosen for investigation
- More design nets are tested for post-irradiation
input threshold - Part to part and pin to pin dependence observed
Table 3 Lot C Post-Irradiation VT
DUT Total Dose Net 1 Net 1 Net 2 Net 2 Net 3 Net 3 Net 4 Net 4
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V)
C1 60krad 1.43 1.46 1.38 1.44 1.39 1.46 NA NA
C2 60krad 1.39 1.5 1.41 1.47 1.41 1.49 1.21 1.56
C3 60krad 1.39 1.49 1.31 1.54 1.38 1.46 1.38 1.48
C4 100krad 2.59 2.63 1.42 1.48 2.57 2.64 1.4 1.55
C5 100krad 1.47 1.51 1.44 1.47 1.45 1.49 1.43 1.51
C6 100krad 1.39 1.53 1.35 1.49 1.38 1.5 1.4 1.53
C7 100krad 1.41 1.48 1.38 1.48 1.35 1.49 1.36 1.55
C8 100krad 1.42 1.52 1.43 1.49 1.42 1.49 1.41 1.49
8Post-Irradiation Input Threshold Switching from
TTL to CMOS
Table 3 Lot C Post-Irradiation VT
DUT Total Dose Net 5 Net 5 Net 6 Net 6 Net 7 Net 7 Net 8 Net 8
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V)
C1 60krad 1.39 1.45 1.38 1.46 1.38 1.45 1.39 1.45
C2 60krad 1.4 1.52 1.39 1.55 NA NA 1.38 1.44
C3 60krad 1.37 1.47 1.37 1.47 1.32 1.46 1.36 1.45
C4 100krad 1.37 1.49 1.43 1.49 1.41 1.49 2.61 2.66
C5 100krad 1.47 1.51 1.45 1.51 1.42 1.48 1.42 1.48
C6 100krad 1.39 1.49 NA NA 1.4 1.62 1.51 1.63
C7 100krad 1.38 1.45 1.43 1.51 1.31 1.56 1.4 1.48
C8 100krad 1.44 1.47 1.44 1.48 1.42 1.47 1.43 1.47
DUT Total Dose Net 9 Net 9 Net 10 Net 10 Net 11 Net 11
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V)
C1 60krad 1.38 1.45 1.38 1.46 1.4 1.45
C2 60krad 1.38 1.45 1.22 1.58 1.41 1.49
C3 60krad 1.34 1.46 1.38 1.48 1.37 1.44
C4 100krad 1.41 1.47 1.38 1.54 1.36 1.46
C5 100krad 1.44 1.51 1.48 1.54 1.45 1.48
C6 100krad 1.37 1.49 1.37 1.57 1.37 1.48
C7 100krad 1.36 1.43 1.13 1.64 1.39 1.49
C8 100krad 1.42 1.49 1.43 1.5 1.42 1.48
9Annealing Effect Experiment
- Five DUT from lot C are irradiated to 100 krad
with a lower dose rate (1 krad/hr) - No switching from TTL to CMOS observed
DUT Total Dose Net 0 Net 0 Net 1 Net 1 Net 2 Net 2 Net 3 Net 3 Net 4 Net 4 Net 5 Net 5
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V)
C9 100krad 1.36 1.49 1.37 1.49 1.37 1.48 1.33 1.46 1.40 1.49 1.39 1.48
C10 100krad 1.36 1.47 1.42 1.52 1.40 1.48 1.38 1.49 1.43 1.51 1.41 1.50
C11 100krad 1.36 1.49 1.40 1.51 1.39 1.49 1.38 1.50 1.40 1.50 1.41 1.50
C12 100krad 1.36 1.61 1.39 1.50 1.38 1.48 1.35 1.48 1.43 1.52 1.33 1.51
C13 100krad 1.34 1.53 1.37 1.52 1.36 1.54 1.35 1.50 1.34 1.54 1.25 1.59
DUT Total Dose Net 6 Net 6 Net 7 Net 7 Net 8 Net 8 Net 9 Net 9 Net 10 Net 10 Net 11 Net 11
DUT Total Dose VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V)
C9 100krad 1.41 1.51 1.38 1.46 1.37 1.46 1.35 1.46 1.44 1.53 1.34 1.45
C10 100krad 1.41 1.51 1.38 1.47 1.39 1.49 1.37 1.49 1.42 1.52 1.38 1.46
C11 100krad 1.41 1.52 1.39 1.48 1.39 1.48 1.38 1.50 1.41 1.51 1.37 1.46
C12 100krad 1.41 1.52 1.38 1.48 1.20 1.59 1.35 1.53 1.43 1.53 1.38 1.47
C13 100krad 1.35 1.55 1.43 1.52 1.42 1.52 1.36 1.49 1.41 1.51 1.43 1.53
10Focus Ion Beam Experiment
- The internal node that is suspected being pulled
down by radiation-induced leakage is FIBed for
microprobing - However, the heat generated during the FIB
process annealed the device and hence recovered
the TTL input threshold from CMOS
11Fabrication Process Dependence
- Foundry X show TTL to CMOS switching in 2 out of
5 lots, more recent lots show no switching - Foundry Y doesnt show TTL to CMOS switching in 3
lots - Variable material characteristics of the
commercial foundry FOX (field oxide) determine
the TID tolerance of this phenomenon
12Configurable Input
- As shown in Figure below, a popular way to vary
the input threshold is to change the strength of
the pull-down by changing the turn-on number of
NMOSFET pull-downs - TTL (1.5V trip point) has more turn-on NMOSFET
pull-downs than CMOS (2.5V trip point)
Fig 3 showing the simplified schematic of
configurable input
13Failure Mechanism
- For testing the programmable switch, node X is
holding high by a single weak pull-up for TTL
configuration - Radiation induced leakage in the NMOS pull-down
device pulls node X down (after certain total
dose) and switches the input configuration from
TTL (trip point 1.5V) to CMOS (trip point 2.5V)
14Physical Mechanism
The charge generation, transport and trapping in
a biased oxide layer. The primary effect in
sub-micron device is the hole trapping near the
Si/SiO2 interface.
15Physical Mechanism
16Physical Mechanism
- Total dose induced edge and field leakage
17Lesson Learned and TID Hardening
- Accelerated testing overestimates the effects
caused by radiation-induced field leakages - Commercial foundries have variable FOX
characteristics - Weak pull-up is a weak spot for total dose effect
- Commercial design often is not perfectly
radiation optimized due to time to market
pressure - Two design options
- Redesign the logic so there is no weak pull-up
- Re-layout the leaky NMOSFET to edgeless (shown
below)