The Rijndael Block Cipher - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

The Rijndael Block Cipher

Description:

THE RIJNDAEL BLOCK CIPHER By Vincent Leith BASICS OF CRYPTOGRAPHY Encryption turning plaintext into unreadable nonsense Plaintext Regular type or data to be ... – PowerPoint PPT presentation

Number of Views:141
Avg rating:3.0/5.0
Slides: 19
Provided by: Oreh
Learn more at: http://www.math.unt.edu
Category:

less

Transcript and Presenter's Notes

Title: The Rijndael Block Cipher


1
The Rijndael Block Cipher
  • By Vincent Leith

2
Basics of Cryptography
  • Encryption turning plaintext into unreadable
    nonsense
  • Plaintext Regular type or data to be encrypted
  • Ciphertext converted plaintext
  • Cipher algorithm used to encrypt and decrypt
    plaintext and ciphertext.

3
Introduction
  • Created by Joan Daemen and Vincent Rijmen
  • American National Institute of Standards and
    Technology
  • Trying to create a new Advanced Encryption
    Standard (AES)
  • Held a contest to create a new encryption standard

4
Design
  • Resistance against all known attacks
  • Speed and code compactness on a wide range of
    platforms
  • Design simplicity

5
Finite Field Arithmetic
  • Rijndael operates in a GF(28) finite field
  • The field is byte based and expressed in Hex
  • b7X7 b6X6 b5X5 b4X4 b3X3 b2X2 b1X1
    bo
  • Example
  • X7 X6 X4 X3 X2 1 11011101

6
Finite Field Arithmetic (cont.)
  • 0000 0
  • 0001 1
  • 0010 2
  • 0011 3
  • 0100 4
  • 0101 5
  • 0110 6
  • 0111 7
  • 1000 8
  • 1001 9
  • 1010 A
  • 1011 B
  • 1100 C
  • 1101 D
  • 1110 E
  • 1111 F

7
Finite Field Arithmetic (cont.)
  • Addition done using bitwise EXOR
  • Example 57 83 D4
  • (X6 X4 X2 X 1) (X7 X 1) X7 X6
    X4 X2
  • Multiplication using modulo X8 X4 X3 X 1
  • Example 57 ? 83 C1
  • (X6 X4 X2 X 1) (X7 X 1)
  • X13 X11 X9 X8 X6 X5 X4 X3 1 mod
  • X7 X6 1

8
ByteSub Transformation
  • Transformation is a non-linear byte substitution,
    operating on each of the Statebytes
    independently.

9
ShiftRow Transformation
  • The rows of the State are cyclically shifted over
    different offsets.
  • Row 0 is not shifted, Row 1 is shifted over C1
    bytes, row 2 over C2 bytes and row 3 over C3
    bytes.

10
MixColumn Transformation
  • The columns of the State are considered as
    polynomials over GF(28) and multiplied modulo X4
    1 with a fixed polynomial c(X)
  • b(X) c(X) a(X)

11
Round Key Addition
  • Applied to the State by a simple bitwise EXOR.

12
The Round Transformation
  • Matrix implementation of key addition and
    MixColumn
  • For ShiftRow and ByteSub transformations

13
The Round Transformation (cont.)
  • Using Substitution and taking the column indices
    to modulo Nb
  • Matrix multiplication of a linear combination of
    vectors

14
The Round Transformation (cont.)
  • Perform a table lookup for input bytes ai,j in
    the S-box table S256 for multiplication factors
  • Using the above 4 tables the round transformation
    can now be expressed

15
(No Transcript)
16
Example of Encryption
  • 128 bit cipher
  • Key E8E9EAEBEDEEEFF0F2F3F4F5F7F8F9FA
  • Plaintext 014BAF2278A69D331D5180103643E99A
  • Ciphertext 6743C3D1519AB4F2CD9A78AB09A511BD 
  • 192 bit cipher
  • Key 04050607090A0B0C0E0F10111314151618191A1B1D1E1
    F20
  • Plaintext 76777475F1F2F3F4F8F9E6E777707172
  • Ciphertext 5D1EF20DCED6BCBC12131AC7C54788AA 
  • 256 bit cipher
  • Key 08090A0B0D0E0F10121314151718191A1C1D1E1F21222
    324262728292B2C2D2E
  • Plaintext 069A007FC76A459F98BAF917FEDF9521
  • Ciphertext 080E9517EB1677719ACF728086040AE3

17
For Example of Actual Code
  • http//msdn.microsoft.com/en-us/library/system.sec
    urity.cryptography.rijndael.aspx

18
Acknowledgements
  • http//www.eng.tau.ac.il/yash/crypto-netsec/rijnd
    ael_files/rijnov.gif
  • http//msdn.microsoft.com/en-us/library/system.sec
    urity.cryptography.rijndael.aspx
  • http//www.hanewin.net/encrypt/aes/aes-test.htm
  • AES Proposal Rijndael by Joan Daemen, Vincent
    Rijmen
Write a Comment
User Comments (0)
About PowerShow.com