Title: Thermoelastic properties of ferropericlase
1Thermoelastic properties of ferropericlase
Thermoelastic properties of ferropericlase
R. Wentzcovitch Dept. of Chemical Engineering and
Materials Science, Minnesota Supercomputing
Institute J. F. Justo, C. da Silva, Z. Wu Dept.
of Chemical Engineering and Materials
Science T. Tsuchiya Ehime University, Japan
2Outline
- Ab initio calculations of Fe in (Mg1-xFex)O
- Thermodynamics of the spin transition
- Thermoelastic properties of (Mg1-xFex)O
- Geophysical implications
-
3Motivation Earths Minerals
- Lower Mantle Ferrosilicate Perovskite
ferropericlase - Low iron concentration (lt 0.20)
- High-temperatures and high pressures
- Elasticity
4First Principles Calculations
- Density Functional Theory (LDAU)
- (Cococcioni and de Gironcoli, PRB, 2005)
- Plane waves Pseudopotential
- (Troullier-Martins, PRB, 1991,
Vanderbilt, PRB, 1990) - Structural relaxation in all configurations
- Density Functional Perturbation Theory
- (Baroni et al., RMP, 2001)
5Optimized Hubbard U
HS
LS
6First Principles Calculations HS-LS transition
(Tsuchiya et al., PRL, 2006)
PT 323 GPa No systematic dependence on XFe
7Equation of State (Mg0.81Fe0.19)O
(Tsuchiya et al., PRL, 2006)
?V -4
Experimental (J.F.Lin et al., Nature,
2005) 17 Fe and room temperature
8Temperature Effects n(P,T)
(Tsuchiya et al., PRL, 2006)
1) Magnetic entropy 2) HS/LS configuration
entropy 3) Fe/Mg configurational entropy is
insensitive to spin state 4) Vibrational energy
and entropy are insensitive to spin state 5)
Minimization of G(P,T,n) with respect to n
9LS fraction n(P,T)
(Tsuchiya et al., PRL, 2006)
XFe18.75
Exp
Geotherm (Boehler, RG, 2000)
10(No Transcript)
11Volume of the mixed spin state V(P,T,n)
- Mixed spin configuration was described by the
Vegards rule - where n low spin fraction
- Iron-iron interaction is not significant for
xFe18.75
12High temperature elasticity
13Static vibrational free energy
- VDoS and F(T,V) within the quasiharmonic
approximation
IMPORTANT crystal structure and phonon
frequencies depend on
volume alone!!
14Thermoelastic Constant Tensor Cijpure(P,T)
(Wentzcovitch et al., PRL, 2004)
Eulerian Strain
?kl
equilibrium structure
re-optimize
15Approximate Virtual Crystal model
Replace Mg mass by the average cation mass of the
alloy
?(V) ?LS(V) ?HS(V)
16Procedure to obtain Cij(P,T,n)
- Compute CijLS(P,T) and CijHS(P,T)
- SLS(P,T) CLS(P,T)-1 and SHS(P,T)
CHS(P,T)-1 - Calculate
- Compute V(P,T,n) and Sij(P,T,n)
- C(P,T,n) S(P,T,n)-1
- Compute K(P,T,n) and G(P,T,n)
17Volume V(P,T,n(P,T)) for xFe 18.75
xFe 18.75
300K (exp.)
Experiments (Lin et al., Nature, 2005)
(xFe17, RT)
18Elastic Constants (xFe 18.75)
19Isotropic Elastic Constants
Experiments ? (Lin et al., GRL, 2006) xFe
25 (NRIXS, RT) ? (Lin et
al., Nature, 2005) xFe 17 (X-ray
diffraction, RT) ? (Kung et
al., EPSL, 2002) xFe 17 (RUS, RT)
20Sound Wave Velocities
xFe 18.75
Experiments ? (Lin et al., GRL, 2006) xFe
25 (NRIXS, RT) ? (Kung et
al., EPSL, 2002) xFe 17 (RUS, RT)
21Geophysical Implications
Geophysical Implications
22Elasticity Along Mantle Geotherm
1150 km
1580 km
Geotherm (Boehler, Rev. Geophys. 2000)
-15
6
23Wave Velocities Along Mantle Geotherm
1580 km
1150 km
-9
-15
6
3
Geotherm (Boehler, GRL,2000)
24Seismic Parameters (Mantle Geotherm)
Geotherm (Boehler, RG, 2000)
(Kara
25Wave Velocities Along Mantle Geotherm
1580 km
1150 km
-9
-15
6
3
Geotherm (Boehler, GRL,2000)
26Summary
- HS-LS transition in (Mg1-xFex)O is well
reproduced theoretically -
- There is a strong softening in the bulk modulus
across the spin transition. This effect broadens
and decreases with temperature - Along a lower mantle geotherm this softening is
more pronounced between 45-70 GPa, i.e.,
1150-1580 km - The shear modulus increases monotonically in the
same region - Transition can produce negative values of R?/s
in the upper part of the lower mantle - The softening will likely occur also in
ferrosilicate perovskite - The Si/(MgFe) ratio in the lower mantle should
increase from pyrolitic values because of the
spin transtions in ferropericlase and
ferrosilicate perovskite
27Acknowledgements
NSF/EAR 0135533 NSF/EAR 0230319 NSF/ITR
0428774 Japan Society for the Promotion of
Science (JSPS) Brazilian Agency
CNPq Computations performed at the MSI-UMN