SNA of local PH sector - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

SNA of local PH sector

Description:

Fractal Geometry Dr Helen McAneney Centre for Public Health, Queen s University Belfast – PowerPoint PPT presentation

Number of Views:98
Avg rating:3.0/5.0
Slides: 31
Provided by: HelenMc8
Category:
Tags: sna | local | netlogo | sector

less

Transcript and Presenter's Notes

Title: SNA of local PH sector


1
Fractal Geometry
Dr Helen McAneney
Centre for Public Health, Queens University
Belfast
2
This talk
3
Steven H Strogatz, 1994. Nonlinear Dynamics and
Chaos with applications to Physics, Biology,
Chemistry and Engineering (Addison-Wesley).
4
Fractals
  • Term coined by Mandelbrot in 1975 and was derived
    from the Latin fractus meaning "broken" or
    "fractured.
  • Self-similarity, i.e. look the same at different
    magnifications
  • Mathematics A fractal is based on an iterative
    equation
  • Mandelbrot set
  • Julia Set
  • Fractal fern leaf
  • Approx. natural examples
  • clouds, mountain ranges, lightning bolts,
    coastlines, snow flakes, cauliflower,
    broccoli, blood vessels...

5
Mandelbrot Set
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
Netlogo Mandelbrot
Source ccl.northwestern.edu
10
Interface
set z-real c-real (rmult z-real z-imaginary
z-real z-imaginary) set z-imaginary c-imaginary
(imult temp-z-real z-imaginary
temp-z-real z-imaginary)
11
Extension1
  • set z-real
  • c-real - (rmult z-real z-imaginary z-real
    z-imaginary)
  • set z-imaginary
  • c-imaginary - (imult temp-z-real z-imaginary
    temp-z-real z-imaginary)

12
Extension2
  • set z-real
  • c-real - (rmult z-real z-imaginary z-real
    z-imaginary)
  • set z-imaginary
  • c-imaginary (imult temp-z-real z-imaginary
    temp-z-real z-imaginary)

13
Koch Snowflake
  • With every iteration, the perimeter of this shape
    increases by one third of the previous length.
  • The Koch snowflake is the result of an infinite
    number of these iterations, and has an infinite
    length, while its area remains finite.

14
Netlogo L-System Fractals
Kochs Snowflake 3 iterations
15
Code
  • to kochSnowflake
  • ask turtles set new? false pd
  • ifelse ticks 0
  • repeat 3
  • t ahead len l 60 t ahead len r 120 t ahead
    len l 60 t ahead len r 120
  • t ahead len l 60 t ahead len r 120 t ahead
    len l 60 t ahead len r 120
  • set len (len / 3)
  • d
  • end

16
First attempt!
17
Fractal Square?
Iteration 1
18
Fractal Square?
Iteration 2
19
Fractal Square?
Iteration 3
20
Fractal Square?
Iteration 4
21
Code
  • to kochSnowflakenew2
  • ask turtles set new? false pd
  • ifelse ticks 0
  • repeat 4
  • t ahead len l 90 t ahead len r 90 t ahead len r
    90 t ahead len l 90 t ahead len r 90
  • t ahead len l 90 t ahead len r 90 t ahead len r
    90 t ahead len l 90 t ahead len r 90
  • set len (len / 3)
  • d
  • end

22
Fractal Square 2?
Iteration 1
23
Fractal Square 2?
Iteration 2
24
Fractal Square 2?
Iteration 3
25
Fractal Square 2?
Iteration 4
26
Code
  • to kochSnowflakenew2
  • ask turtles set new? false pd
  • ifelse ticks 0
  • repeat 4
  • t ahead len r 90 t ahead len l 90 t ahead len l
    90 t ahead len r 90 t ahead len r 90
  • t ahead len r 90 t ahead len l 90 t ahead len l
    90 t ahead len r 90 t ahead len r 90
  • set len (len / 3)
  • d
  • end

27
Fractal Hexagon?
Iteration 1
28
Fractal Hexagon?
Iteration 2
29
Fractal Hexagon?
Iteration 3
30
New Code
  • Changed heading to -30
  • to kochSnowflakeNEW
  • ask turtles set new? false pd
  • ifelse ticks 0
  • repeat 6
  • t ahead len l 60 t ahead len r 60 t ahead
    len r 60 t ahead len l 60 t ahead len r 60
  • t ahead len l 60 t ahead len r 60 t ahead
    len r 60 t ahead len l 60 t ahead len r 60
  • set len (len / 4)
  • d
  • end
Write a Comment
User Comments (0)
About PowerShow.com