Title: Diapositive 1
1Mechanical Response at Very Small Scale Lecture
4 Elasticity of Disordered Materials Anne
Tanguy University of Lyon (France)
2IV. Elasticity of disordered Materials. 1)
General equations of motion for a disordered
material 2) Rigorous bounds for the elastic
moduli. 3) Examples.
Ping Sheng Introduction to wave scattering,
Localization, and Mesoscopic Phenomena
(1995) B.A. DiDonna and T. Lubensky Non-affine
correlations in Random elastic Media (2005) C.
Maloney Correlations in the Elastic Response
of Dense Random Packings (2006) Salvatore
Torquato Random Heterogeneous Materials
Springer ed. (2002)
3(No Transcript)
4Inhomogeneous strain field
5Example of a lennard-Jones glass
A. Tanguy et coll. Phys. Rev. B (2002), J.P.
Wittmer et coll. Europhys. Lett. (2002), A.
Tanguy et coll. App. Surf. Sc. (2004) F.
Léonforte et coll. Phys. Rev. B (2004), F.
Léonforte et coll. Phys. Rev. B (2005), F.
Léonforte et coll. Phys. Rev. Lett. (2006), A.
Tanguy et coll. (2006), C. Goldenberg et coll.
(2007), M. Tsamados et coll. (2007), M. Tsamasos
et coll. (2009).
Atomic displacements
Inhomogeneous response, rotational displacements
in the non-affine part.
- A.Tanguy et al.
- (2002,2004,2005)
- A.Lemaître et C. Maloney
- (2004,2006)
- J.R. Williams et at. (1997)
- G. Debrégeas et al. (2001)
- S. Roux et al. (2002)
- E. Kolb et coll. (2003)
- Weeks et al. (2006)
6other examples of inhomogeneous strain
7Dynamical Heterogeneities
- Keys, Abate, Glotzer, DJDurian (preprint, 2007)
8Large distribution of local Elastic Moduli
9(No Transcript)
10Lennard-Jones glass homogeneous and then
isotropic Wgt20a
11General bounds for the Effective Elastic Moduli
12General bounds for the effective macroscopic
elastic moduli of an inhomogeneous solid.
Example of fibers in a matrix
Reuss (1929)
13General bounds for the effective macroscopic
elastic moduli of an inhomogeneous solid.
14Preliminary results
then
15Voigt Bound (1889)
for any deformation at equilibrium, homogeneously
applied at the boundaries.
with equality only if
16Reuss Bound (1929)
for any deformation at equilibrium, homogeneously
applied at the boundaries.
with equality only if
17Other Bounds
with
Ex. Exact kth order perturbative solution (n2
Hashin and Shtrikman, 1963)
then
18Examples
N. Teyssier-Doyen et al. (2007)
Voigt
Reuss
19Example 2 Lennard-Jones glass
Progressive convergence to the macroscopic moduli
l and m, homogeneous and isotropic medium at
large scale. Faster convergence of
compressibility (homogenesous density)
20Example of an Anisotropic Material Wood for
Musical Instruments
21Holographic Interferometry, Hutchins (1971)
Simplified expresison of the Eigenmodes of an
Harmonic Table
E// 11,6 GPa E- 0,716 GPa r 0.39 t.m-3
22Looking for a Material with Analogous Anisotropy
E// / E- 16.
E// rf.Vf rm.(1-Vf) PRFC with Vf 13 E-
1/ (Vf/rf (1-Vf)/rm) then E// 53 GPa Mass
Density rPRFC 1,25 t.m-3 Comparing the
Eigenfrequencies imposes a thickness dPRFC
0.75 x dwood 2.52 mm Then the Total Mass of
the Harmonic Table is very large MPRFC 2.69 x
Mwood !!!
23C. Besnainou (LAM, Paris) sandwich material
Plaster Mould in a Vacuum Bag, Heated at 140C.
Heating with Silicone Rubbers. Heating Ramp lt
1/2h.
Wood
Acrylic Foam
Unidirectional Carbon Fiber glued in epoxy
convenient also for lutes
Consequences llight, stable, humidity-resistant,
less damping,
24cellos, and string basses COSI
Solidity and stability, especially against
humidity, With the help of composite materials
with Carbon Fibers. Richness of tone?
25End
26Bibliography I. Disordered Materials K. Binder
and W. Kob Glassy Materials and disordered
solids (WS, 2005) S. R. Elliott Physics of
amorphous materials (Wiley, 1989) II. Classical
continuum theory of elasticity J. Salençon
Handbook of Continuum Mechanics (Springer,
2001) L. Landau and E. Lifchitz Théorie de
lélasticité . III. Microscopic basis of
Elasticity S. Alexander Physics Reports 296,65
(1998) C. Goldenberg and I. Goldhirsch Handbook
of Theoretical and Computational
Nanotechnology Reith ed. (American scientific,
2005) IV. Elasticity of Disordered Materials B.A.
DiDonna and T. Lubensky Non-affine correlations
in Random elastic Media (2005) C. Maloney
Correlations in the Elastic Response of Dense
Random Packings (2006) Salvatore Torquato
Random Heterogeneous Materials Springer ed.
(2002) V. Sound propagation Ping Sheng
Introduction to wave scattering, Localization,
and Mesoscopic Phenomena (Academic Press
1995) V. Gurevich, D. Parshin and H. Schober
Physical review B 67, 094203 (2003)