Title: ??????????????? An improved approach to automatically build fuzzy model rules
1??????????????? An improved approach to
automatically build fuzzy model rules
- ??? (Nai-Jian Wang)
- ?????????
- ????????????
- ???????
2Outline
- Motivations
- The concept of system identification
- The improved algorithm
- Simulations and Discussions
- Conclusions and Future Works
3Motivation
- Only I/O data
- Model construction
- I/O relation
- Modification
4The concept of system identification
Structure Identification I a Input candidates
Structure Identification I b Input variables
Structure Identification II a Number of rules
Structure Identification II b Partition of input space
Parameter Identification Parameter Identification
5Takagi and Sugenos model
6Sugeno and Yasukawas model
7Fuzzy modeling
8To decide the number of rules
9Fuzzy C-means clustering
10To determine the number of rules
11Coarse fuzzy modeling
- Fuzzy C-Regression Model (FCRM)
- Premise parameters generation
- Consequent parameters generation
12Fuzzy C-Regression Model (1)
13Fuzzy C-Regression Model (2)
14Premise parameters generation (1)
15Premise parameters generation (2)
16Premise parameters generation (3)
17Premise parameters generation (4)
18Consequent parameters generation
19Fine tuning
20The steepest decent method
21The gradient of objective function (1)
22The gradient of objective function (2)
23The gradient of objective function (3)
24Stop condition
25 Example 1 (1)
Rule
3.095 3.201 3.518 -0.249 -0.265
1.477 1.511 3.518 -0.249 -0.265
2.751 2.406 6.504 -0.672 -0.469
2.072 2.156 6.504 -0.672 -0.469
2.828 2.437 4.842 -0.381 -0.421
1.831 1.839 4.842 -0.381 -0.421
2.667 2.805 4.136 -0.387 -0.357
1.026 1.369 4.136 -0.387 -0.357
2.897 2.544 5.052 -0.559 -0.243
2.005 1.924 5.052 -0.559 -0.243
26Example 1 (2)
The optimal parameters
Rule
3.806 2.842 5.165 -1.094 -0.224
0.957 1.471 5.165 -1.094 -0.224
2.767 1.853 4.741 -1.117 -1.072
1.080 0.657 4.741 -1.117 -1.072
2.023 2.682 3.671 -0.572 -0.884
0.590 1.323 3.671 -0.572 -0.884
2.973 3.221 3.447 -0.317 -0.551
0.951 1.120 3.447 -0.317 -0.551
2.894 2.363 8.415 -0.376 -0.785
1.984 2.230 8.415 -0.376 -0.785
27Example 1 (3)
28Example 2 (1)
29Example 2 (2)
30Example 3 (1)
31Example 3 (2)
32Conclusions and Future Works
- ????,???
- ????????
- ???????????????
- ?????????????
- ??FCM??????
- ????????????????
33Least-squares estimator